Residual Stress Process Simulation Committee Progress Report

Engineered Residual Stress Implementation Virtual Workshop 2020 Location: The Ether December 2020

Outline

- Committee Activity
- •Material Testing Update 7075
- •Process Simulation Round Robin Update
- •Other items of interest (2x2 specimen status, future RR plans)

DIC Hoop strains

FEA Hoop strains Chaboche Hardening

Committee Activity & Roster Updates

- •Excellent Participation
 - •Monthly Meeting 3rd Friday of each month, all are welcome!
 - •Total of 13 monthly meetings
- •Round Robin Data Reduction Crew
 - •Gavin Jones
 - •Scott Prost-Domasky
 - •Keith Hitchman
 - •Total of three sidebar meetings

Material Model Testing - Purpose of Program

Material Model Testing - Purpose of Program

Figure 7 – (a) Flow curves tested, (b) resulting hoop residual stress ($\sigma_{\theta\theta}$ *); note log scale on x/R*

Ribeiro, Renan L., and Michael R. Hill. "Residual Stress From Cold Expansion of Fastener Holes: Measurement, Eigenstrain, and Process Finite Element Modeling." Journal of Engineering Materials and Technology 139.4 (2017): 041012. <u>https://doi.org/10.1115/1.4037021</u>

Material Model Testing – General Plan

- •Based upon E606 LCF, up to $\pm 4\%$ in./in., reduced to $\pm 1.5\%$
- •Isolating current investigation to orthotropy
- •2024 testing complete 2018
- •7075 testing complete 2020

Material Model Testing – Previous Results, 2024

Chaboche Parameter	NRC·CNRC Long.	NRC·CNRC Trans.	NRC·CNRC 45°	Avg.	Clausen, et. al.*
σ _{ys} , psi	30281	28942	32786	30670	31894
C, psi	7.35e6	8.69e6	8.19e6	8.08e6	9.74e6
Ŷ	346.88	412.96	399.09	386.31	412.0
Q, psi	21202	21042	20526	20923	23637
b	3.37	3.85	5.53	4.70	7.00
E, psi	10.56e6	10.36e6	11.10e6	10.67e6	10.62e6
E	0.33	0.33	0.33	0.33	0.33

Material Model Testing – New Results, 7075

Chaboche Parameter	NRC 3% L-TC		NRC 3% L-CT		l N	Zehsaz, et. al.*		
σ _{ys} , psi	49993		45720			60000		
C, psi	1.99e6	3.50e7	2.21e6	3.25e7	3.65e7	1.32e7	1.52e6	7.72e5
Ŷ	95.57	1795.80	113.79	1546.80	4845.10	782.45	90.37	31.06
Q, psi	1226		866				19957	
b	209.09		56.68			6.82		
E, psi	9.9	92e6	1.14	19e7		1.128e7		1.06e7
E	0.33		0.33			0.33		

* 7075-T6 @ RT, see https://paginas.fe.up.pt/~m2d/Proceedings_M2D2017/data/papers/6567.pdf

LSI DM#859278

Material Model Testing – New Results, 7075

Material Model Testing – New Results, 7075

Comparisons: Combined Hardening, new Chaboche (L-TC), and XRD data

RS Process Simulation Round Robin

• Multiple submissions from seven participants

HILL

ENGINEERING

- Abaqus
- MARC
- Nastran
- StressCheck

NRC.CNRC

- Analysis of the 2"x2" coupon cold expansion
 - Model matrix shown at right
 - Presentation limited to 2024-L2 discussion
- Multiple measurement techniques offer a unique opportunity for process simulation validation and correlation.
- Paper presenting round robin comparisons in work, lead by R. Ribeiro (Hill Engineering).

Coupon Name	Target Applied Expansion Level	Sleeve Orientation (0° = vertical)	Measured Starting Hole Diameter (inch)	Measured Plate Thickness (inch)	Mandrel Major Diameter (inch)	Sleeve Thickness (inch)	Final (Post- Ream) Hole Diameter (inch)
"2024-L2" 2024-Cx- DIC/LUNA/XRD/CM/SG-02-L2	3.16	10.0°	0.4775	0.253	0.4684		
"2024-H1" 2024-Cx- DIC/LUNA/XRD/CM/SG-03-H1	4.16	-1.2°	0.4743	0.254	0.4697	0.0120	0 5000
"7075-L1" 7075-Cx- DIC/LUNA/XRD/CM/SG-01-L1	3.16	3.2°	0.4769	0.252	0.4684	0.0120	0.5000
"7075-H1" 7075-Cx- DIC/LUNA/XRD/CM/SG-03-H1	4.16	-9.5°	0.4741	0.251	0.4697		

3DR – 3D Radial Displacement 3DP – 3D Mandrel Pull Through

- ISO Isotropic Hardening
- COM Combined Hardening
- KIN Kinematic Hardening
- CHL Chaboche, Longitudinal

- 3DR 3D Radial Displacement
- 3DP 3D Mandrel Pull Through
- ISO Isotropic Hardening
- COM Combined Hardening
- KIN Kinematic Hardening
- CHL Chaboche, Longitudinal

3DR – 3D Radial Displacement

- 3DP 3D Mandrel Pull Through
- ISO Isotropic Hardening
- COM Combined Hardening
- KIN Kinematic Hardening
- CHL Chaboche, Longitudinal

- 3DR 3D Radial Displacement
- 3DP 3D Mandrel Pull Through
- ISO Isotropic Hardening
- COM Combined Hardening
- KIN Kinematic Hardening
- CHL Chaboche, Longitudinal

Process Simulation Residual Strains – averaged over area subtended by strain gage.

2024 - L2		SG Value	A 3DR ISO		B 2DR KIN		C 3DR ISO		D 3DP ISO		E 3DP KIN		
		Residual	Residual	% Error									
Hoo Entry — Rad	Hoon	Inner	3570	4436	24.2%	5316	48.9%	5659	58.5%	4341	21.6%	1407	-60.6%
	поор	Outer	982.8	1187	20.8%	1529	55.6%	1306	32.9%	1089	10.8%	656	-33.2%
	Dadial	Inner	-5699	-4417	-22.5%	-4657	-18.3%	-6042	6.0%	-5530	-3.0%	-2543	-55.4%
	Naulai	Outer	-460.8	-487	5.7%	-733	59.1%	-567	23.0%	-467	1.3%	-386	-16.2%
Hoo Exit — Radi	Hoon	Inner	5703	4436	-22.2%	5316	-6.8%	5712	0.1%	5078	-11.0%	1632	-71.4%
	1000	Outer	1238	1187	-4.1%	1529	23.5%	1312	6.0%	1247	0.7%	641	-48.2%
	Dadial	Inner	-6906	-4417	-36.0%	-4657	-32.6%	-6096	-11.7%	-6402	-7.3%	-2882	-58.3%
	nduidi	Outer	-570.6	-487	-14.6%	-733	28.5%	-570	-0.1%	-579	1.5%	-427	-25.2%

2024 - L2		SG Value	F 3DP COM		F 3DP CHA		G 3DP COM		H 3DP ISO		E 3DP ISO		
		Residual	Residual	% Error									
Hoo Entry — Radi	Hoon	Inner	3570	3775	5.7%	3664	2.6%	4598	28.8%	5723	60.3%	1455	-59.2%
	поор	Outer	982.8	1073	9.2%	836	-14.9%	1053	7.1%	1275	29.7%	721	-26.6%
	Dadial	Inner	-5699	-5318	-6.7%	-5333	-6.4%	-5567	-2.3%	-6273	10.1%	-2595	-54.5%
	Naulai	Outer	-460.8	-500	8.5%	-458	-0.6%	-405	-12.1%	-561	21.7%	-416	-9.7%
Ho Exit — Ra	Hoon	Inner	5703	4640	-18.6%	5010	-12.2%	5948	4.3%	7121	24.9%	1757	-69.2%
	Ποορ	Outer	1238	1446	16.8%	1826	47.5%	1225	-1.0%	1698	37.2%	708	-42.8%
	Dadial	Inner	-6906	-6506	-5.8%	-9342	35.3%	-7069	2.4%	-7090	2.7%	-3110	-55.0%
	naulai	Outer	-570.6	-669	17.3%	-803	40.7%	-555	-2.7%	-765	34.1%	-481	-15.7%

All values in μ inch/inch. Green: less than ±10% Red: more than ±30%

Other Items of Interest

- 2x2 Specimen (Stansfield)
 Surface Paper
 Final Measurements
- •Round Robin Last Steps
 - •Complete Report Out
 - •Paper Submittal
- •Round Robin: GLS

Residual Stress Process Simulation Committee

ott Prost-Domasky, Analytical Processes/Engineering Solutions (AP/ES), Inc. laume Renaud, National Research Council Canada Marcus Stanfield, Southwest Research Institute Dr. Min Liao, National Research Council Canada Dr. Marcias Martinez, Clarkson University Dr. Adrian DeWald, Hill Engineering, LLC Robert Pilarczyk, Hill Engineering, LLC Matt Shultz, Fatigue Technology Dr. Ralph Bush, USAF Academy Thuy Nguyen-Quoc, Boeing Dr. Michael Worley, SwRI Tim Philbrick, MERC Dr. Mike Steinzig, LANL Andrew Jones, USAF Dr. Gavin Jones, SmartUQ Dr. Robert McGinty, MERC Dr. Chris Allen, Booz Allen Hamilton Dr. Eric Greuner, Lockheed Martin Aero Dr. Daniele Fanteria, University of Pisa Dr. Scott Carlson, Lockheed Martin Aero David Denman, Fulcrum Engineering, LLC David Carnes, Mercer Engineering Research Center (MERC)

Chair: Keith Hitchman Project Engineer, Analyst Fatigue Technology khitchman@fatiguetech.com Phone: +1-206-701-7232 Mobile: +1-509-948-8240