ERSI RISK AND UQ SUBCOMMITTEE ACTIVITIES

Lucky Smith Southwest Research Institute LSmith@swri.org Laura Domyancic Hunt Southwest Research Institute LDomyancic@swri.org

Outline

- Risk and UQ Subcommittee Overview
- Short Presentations of Current Activities
 - "Probability of Cold Expansion (POCx) Variable," Laura Hunt, SwRI
 - "Some Observations on the Significance of Residual Stress Variability on Fatigue Crack Growth Life," Craig McClung, SwRI
 - "Residual Stress Sensitivity Analysis in Probabilistic DTA," Juan Ocampo, St. Mary's U

Committee Overview

• **GOAL**: Investigate and implement UQ methods that enhance the overall understanding of how residual stress affects life prediction analyses

• How we can reach the goal:

- Uncertainty Quantification
- Sensitivity Analysis
 - What are the most significant variables in the ERS process?
 - How can we maximize/minimize the benefits/damages of these variables?

2018 Workshop

- In the past year, the state of the art for UQ and sensitivity analysis methods were investigated
 - NASA UQ Challenge 2014 AIAA SciTech Conference
 - Spatial statistics
 - Variance-based and local sensitivity analysis methods
 - What methods are useful for the group going forward?
- We're here to help
 - Our subcommittee doesn't generate data
 - We received one RS data set in the past year

"PROBABILITY OF COLD EXPANSION" VARIABLE

A-10 ASIP and Southwest Research Institute

POCx

- How can we incorporate cold expansion into a PROFtype risk analysis?
- A-10 ASIP suggested a Probability of Cold expansion (POCx) variable that acts similarly to the Probability of Inspection (POI) variable that is currently in PROF
- POCx is a singular value that represents the probability that a hole was cold-worked correctly
 - "Correctly" is a loaded term
- This is not a final methodology, but rather a very simplified way to incorporate coldworking into current methods

Crack Growth Life Curves

- Results from the ERSI round-robin were used as an input for the cold expanded hole case
 - Benchmark 2, 25 ksi stress
- Residual stresses were removed from the AFGROW input to create results for a theoretical non-coldworked hole case

PROF Results

 Separate PROF analyses were run for the Cx and non-Cx cases

Incorporating POCx

- The SFPOF results for both analyses were imported into Excel
- 95% and 99% POCx were incorporated by the formula below

boar	d G		Font		Es.	AI	ignment		Ga .	Numb
• : ×		× 🗸	<i>f</i> _× =0.	.05*C2+0.95	5*F2					
	В	С	D	E	F	G	н	1	J	к
	No Cx			With Cx				95% POCx	99% POCx	
	0	1.39E-10		0	1.24E-10		0.00E+00	1.24E-10	1.24E-10	
	2500	9.59E-09		2500	1.27E-10		2500	6.00E-10	2.22E-10	
	5000	1.46E-07		5000	1.30E-10		5000	7.40E-09	1.58E-09	
	7500	7.43E-07		7500	1.34E-10		7500	3.73E-08	7.56E-09	
	40000	4.005.00		40000	4 975 49		40000	0.405.07		

POCx Risk Results

- POCx is a simple knockdown factor to incorporate residual stresses
 - Danger of becoming a "thumb-in-the-air" variable
- UQ is required to actually quantify this variable

Residual Stresses Sensitivity Analysis in Probabilistic Damage Tolerance Analysis

Juan D. Ocampo and Alexander Horwath

St. Mary's University

Luciano Smith and Laura Domyancic

Southwest Research Institute

Engineered Residual Stress Implementation Workshop 2018 Salt Lake City, UT, September 13–14, 2018.

- SMART DT AND Residual Stresses
- Residual Stresses Modeling Software (Update)
- Residual Stresses and Inspections
- Sensitivity Analysis
- Future Plans & Group Suggestions

Residual Stress Modeling Software

- Standalone executable to read experimental/ simulated data and find the best deterministic and probabilistic fit parameters.
 - > 2 Models Available (Expandable)
 - > 2D (Stress vs Depth) and 3D (Stress vs Depth vs Thickness).
 - Read input data in .txt & .csv format

> Model I*

$$\sigma(x) = (ss - si + C_1 x) Exp(-C_2 x) + si$$
$$C_1 = \frac{\{(ss - si)(1 - Exp(-C_2 B)) + siBC_2\}C_2}{(C_2 B + 1)Exp(-C_2 B) - 1}$$

Model II**

$$\sigma(x) = Asin(Bx + C)Exp\left(-\frac{x}{\lambda}\right)$$

* User Manual for ZENCRACK™ 7.1, Zentech International Ltd., Camberley, Surrey, UK, September, 2003.
 ** R. VanStone, "F101-GE-102 B-1B Update to Engine Structural Durability and Damage Tolerance Analysis Final Report (ENSIP), Vol. 2," General Electric, p. 5-2-2.

IN100ResidualStressProfilesGUI

O

Х

Input/Output

8

A2-1_stress.txt - Notepad							
File Edit	File Edit Format View Help						
-1.928	0.254	0.000	-10.4				
-1.928	0.000	0.000	-16.8				
-1.928	0.252	0.000	-8.7				
-1.928	0.250	0.000	-6.5				
-1.928	0.248	0.000	-4.7				
-1.928	0.245	0.000	-3.2				
-1.928	0.243	0.000	-1.8				
-1.928	0.240	0.000	-0.7				
-1.928	0.237	0.000	0.2				
-1.928	0.234	0.000	1.1				
-1.928	0.231	0.000	1.7				
-1.928	0.228	0.000	2.3				
-1.928	0.224	0.000	2.7				
-1.928	0.220	0.000	3.0				
-1.928	0.216	0.000	3.1				
-1.928	0.212	0.000	3.1				
-1.928	0.207	0.000	3.0				
-1.928	0.202	0.000	2.9				

Mean and Standard Deviation Parameters

	Mean	St dev
SS	-879.16	58.58
si	205.68	9.448
c2	20.872	1.050

Correlation Parameters

	SS	Si	c2
SS	1	-0.214	0.402
si	-0.214	1	-0.796
c2	0.402	-0.796	1

Academic Example Problem

Input Parameters

FRS

Random Variables	Value	
Fracture Toughness Distribution (Normal)	Mean = 34.5ksi \sqrt{in} , Standard Deviation = 3.8 ksi \sqrt{in} .	
Initial & Repair Lognormal Size Distribution (a & c) (Lognormal)	Mean = 0.01 in, Standard Deviation = 0.001 in.	
Extreme Value Distribution (Gumbel)	Location = 14.5 , Scale = 0.8 , and Shape = 0.0	
Inspections (5,000 & 10,000)	POD Lognormal Mean = 0.07 in, Standard Deviation = 0.06	10

> SMART-AFGROW interface.

Inpections

Results without Inspections

Results without Inspections

Results without Inspections

ERSI Results with Inspections

Inducing RS at the Second Inspections

Sensitivity Study

Input Parameters

FRS

Random Variables	Value
Fracture Toughness Distribution (Normal)	Mean = 34.5ksi \sqrt{in} , Standard Deviation = 3.8 ksi \sqrt{in} .
Initial & Repair Lognormal Size Distribution (a & c) (Lognormal)	Mean = 0.005 in, Standard Deviation = 0.001 in.
Extreme Value Distribution (Gumbel)	Location = 14.5, Scale = 0.8 , and Shape = 0.0

ERSI Residual Stress Profile

Shot Peening Residual Stress Profile (Random)

$$\sigma(x) = (ss - si + c_1 x) Exp[-C_2 x] + si$$
$$C_1 = \frac{\{(\sigma_s - \sigma_i)(1 - Exp[-C_2 B]) + \sigma_i BC_2\}C_2}{(C_2 B + 1)Exp[-C_2 B] - 1}$$

Mean and Standard Deviation Parameters

		Mean (Mpa)			St dev		
SS		-879.16			58.58		
si		20	5.68		9.448		
c2		20	.872		1.050		
	Correla	ation	Parame	ters	5		
	S	S	si		c2		
SS		1	-0.2	14	0.402		
si	-0.	214	1		-0.796		

0.402

c2

-0.796

Compute sensitivities wrt standard deviation.

Define handbook example problems Need help from the group

Thank you!!

jocampo@stmarytx.edu

Some Observations on the Significance of Residual Stress Variability on Fatigue Crack Growth Life

ERSI Workshop Layton, Utah September 13-14, 2018

R. Craig McClung Southwest Research Institute San Antonio, Texas

- A few anecdotal observations are offered on the significance of variability in residual stress on fatigue crack growth lifetime
- Example 1: Relaxed surface residual stress field created by surface enhancement (shot peening or laser peening) – data courtesy Lambda Technologies (P. S. Prevéy)
- Example 2: Bulk residual stress field created by heat treating – data from MAI BA-11 project

Example 1: Surface Engineered RS

- Surface enhancement methods such as shot peening (SP) or low plasticity burnishing (LPB) can introduce significant near-surface compressive RS fields.
- FCG analysis can be used to predict the influence of the resulting stable RS fields on fatigue life.
- In this example, alpha-beta Ti-6AI-4V laboratory coupons were subjected to SP or LPB and then thermally exposed (425°C/10 hrs) before RS profiles were measured.

Example 1: Surface ERS Approach

- These RS profiles were inserted into a univariant weight function surface crack SIF solution.
- Hypothesizing that the surface enhancement could have introduced microscopic damage that would initiate fatigue cracks quickly, FCG analyses with small initial crack sizes were used to calculate total fatigue life.
- A simple El Haddad model was used to describe small-crack growth rate behavior.

Example 1: Surface ERS Effect of Initial Crack Size

 Variations in the assumed initial crack size had relatively little impact on calculated life (compare large scatter in fatigue lifetimes)

Example 1: Surface ERS Effect of RS Variability

 Small shifts (±9 ksi) in the RS profiles, hypothetically arising from process variability or measurement uncertainty, had a much larger impact on calculated life and were consistent with limited data for life scatter

Example 2: Bulk RS Billet, Logs, Coupons

- 7085-T74 billet cut into many 'logs' that were quenched and aged individually to intentionally leave significant residual stress
- Coupon blanks extracted from three longitudinal positions and six transverse positions (total of eighteen unique positions) within each log

Example 2: Bulk RS Approach Overview

Example 2: Bulk RS Spectrum Tests (Tensile RS)

Swr Example 2: Bulk RS Spectrum Tests (Compressive RS)

Initial crack in region of <u>compressive</u> residual stress

Blocks

Example 2: Bulk RS Observations

- In these tests, the RS had a significant impact on the predicted life, and predictions ignoring RS tended to be highly conservative or highly non-conservative.
- Predictions (32 tests) including mean value RS were generally accurate (±2x) with a conservative bias for constant amplitude loading, and accurate (±2x) with no bias for spectrum loading.
- How did RS scatter affect the predicted life in these tests?
 - Scatter in tensile RS generally had a very small effect
 - Scatter in <u>compressive</u> RS generally had a very <u>large</u> effect

- Use DARWIN probabilistic damage tolerance software
 - Current AFRL investment in DARWIN for AFLCMC
- Develop quantitative characterization of uncertainty in RS
 - Informed by RS models and RS measurements
- Use weight function SIF solutions to model effect of RS on crack driving force
- Perform probabilistic analysis of (uncertain) RS effects on FCG life and fracture risk

Principal Components Analysis for Residual Stresses Along Crack Path

Effect of Random Residual Stress on Risk

Without Residual Stress

Observations on RS Variability and FCG Life

DARWIN Status

- Framework available to superimpose local residual stresses (e.g., surface RS at holes) with service stresses
- Univariant & bivariant WF SIF solutions available for corner/ surface/thru cracks at holes, corner/surface cracks in plates
- Probabilistic treatment of residual stress uncertainty available for bulk residual stresses in 2D finite element models
- Random RS capabilities expandable to local RS in 3D models

- Relatively small variations in residual stress can have a very large impact on predicted FCG lifetime when the residual stress is compressive
- Uncertainty in tensile residual stresses appears to have relatively less effect on life variability
- A more rigorous probabilistic treatment of RS uncertainty and its effect on fracture risk appears warranted
- DARWIN software provides a potential path forward, but some enhancements are needed