ERSI WORKSHOP: RISK AND UQ SUBCOMMITTEE OVERVIEW

Laura Domyancic and Luciano Smith Southwest Research Institute September 2017

OUTLINE

- Objectives for the ERSI Risk Subcommittee
- Review types of uncertainty and random variables for risk assessment
- 2017 Workshop goals
- Presentation by Laura Domyancic on residual stress methods in DARWIN
- Presentation by Juan Ocampo on residual stress methods using SMART

RISK SUBCOMMITTEE OBJECTIVES

- GOAL: Develop methods and procedures that enhance the overall understanding of how residual stress affects life prediction analyses by using uncertainty quantification
- Questions we'd like to answer:
 - By how much, with quantified confidence, does the engineered residual stress process affect life?
 - What are the most significant variables in the ERS process?
 - How can we maximize/minimize the benefits/damages of these variables?

TYPES OF UNCERTAINTY

- Aleatory: Uncertainty relating to inherent variation of a property
 - Fracture toughness variation
 - Material yield stress variation
- **Epistemic**: Uncertainty due to incomplete or erroneous data, "lack of knowledge"
 - Model form uncertainty
 - Measurement error
 - Unknown physics
- Example: Taking into account aleatory uncertainty makes the yield stress a random variable. Taking into account epistemic uncertainty makes the mean and standard deviation *themselves* into random variables.

RISK ANALYSIS CONSIDERING ERS

From Min Liao's 2016 ERSI Pres.

RA Inputs	ERS Impact	Significance / Confidence	How to quantify uncertainty and variability
Initial crack size distribution (ICSD/IDS/EIFSD): related to material, geometry, manufacturing, usage/load, plus analytical method for EIFSD	Nucleation mechanism (sub- surface cracking, fretting etc.), EIFSD changed if DaDTA method changed too	High / ?	Discussion below
Crack growth a-t curve: material/ geometry/loads fracture mechanics (LEFM) modeling	Short crack growth, near threshold growth, high quality data. New a-t with ERS	High / ?	Discussion below
Maximum stress distribution: stress exceedance, loads/usage	Nominally no effect	None / None	Discussion ?
Fracture toughness (Kc) distribution or residual strength: material, geometry/thickness, analytical method	Bulk ERS may affect Kc or σ_{RS} (integral panel with ERS), self- equilibrating RS effect? conservative assumption?	Low-Med / High?	Discussion ?
POD data: over 20 factors including human factor	Lower POD, higher a90/95	High / ?	Discussion
Repaired crack size distribution: repair & modification (drilling/grind- out/cold-work/peening/bonding)	Different RCSD (CW) from ICSD (non-CW), EIFSD also depending on DaDTA method/curve. New a-t curve, new POD	High / ?	combine EIFSD and POD discussion

2017 WORKSHOP

- The ERS process introduces additional variables and uncertainties. The subcommittee's goals for this workshop is to
 - Review current methods within risk analysis that address residual stresses
 - Identify method development that remains (gaps)
- Although software programs will be discussed, our final product is methodology recommendations

Random Residual Stress Modeling in DARWIN

Presented by: Laura Domyancic Southwest Research Institute

ERSI Workshop 2017

Acknowledgments

- Funding for this effort was provided by the US Air Force Research Laboratory
 - Rollie Dutton, AFRL Program Monitor
- Primary funding for DARWIN has been provided by the Federal Aviation Administration through a series of grants
 - Tim Mouzakis, FAA Engine and Propeller Directorate
 - Joe Wilson, FAA Technical Center
 - Industry Steering Committee (GE, Honeywell, P&W, Rolls-Royce)
- Technology implemented in DARWIN[®] software

DARWIN Overview

Design Assessment of Reliability With INspection

Integration with Manufacturing Process Simulation

Link DEFORM output with DARWIN input

- Finite element geometry (nodes and elements)
- Finite element stress, temperature, and strain results
- Residual stresses at the end of processing / spin test
- Location specific microstructure / property data
- Tracked location and orientation of material anomalies

DARWIN-DEFORM Links

Anomaly Tracking and Deformation

Effect of Material Processing Residual Stress on FCG Life

Without Residual Stress

With Residual Stress

Effect of Material Processing Residual Stress on Risk

Without Residual Stress

With Residual Stress

Risk

Phase II: Random Residual Stress Modeling

- Objective
 - Determine random residual stresses associated with material process modeling random input variables at any location within a component
- Approach
 - Design of Experiments
 - Perform deterministic DEFORM runs to obtain residual stress values at all FE nodes
 - Response Surface Fitting
 - Determine the residual stress response using Gaussian Process (GP) model
 - Monte Carlo Simulation
 - Propagate random variables through response surface

Design of Experiments

Response Surface

Demonstration Example: Modeling Random Residual Stresses

Response Surface Generation

NESSUS software facilitates response surface generation:

- Defines input ranges or distributions
- Generates a design of input values to run
 - Supports multiple DOEs
- Interfaces with external numerical model
 - Variables are graphically mapped to input file
 - NESSUS generates input deck for each run
 - NESSUS can execute model and extract outputs
- NESSUS can fit the response surface
 - 1st or 2nd order polynomial
 - Gaussian Process model

Input (input-16561989360303068255.inp) Delta Vector (Lines 18-26)				
Sele	ection mode:) Off	Lines 🔿 Columns 💿 Both	
	000000000	0111111111	112222222222333333333344444444 8901234567890123456789012345678	
14	*MONITOR			
15	TOTALDIS	PLACEMEN	TT NODE 3 COMPONENT 2	
16	STRESS		NODE 3 COMPONENT 1	
17	*COORDINA	TES		
18	1	0.000000	0.000000	
19	2	2.000000	0.00000	
20	3	4.000000	0.00000	
21	4	0.000000	1.000000	
22	5	2.000000	1.000000	
23	6	4.000000	1.000000	
24	7	0.000000	2.000000	
25	8	2.000000	2.000000	
26	9	4.000000	2.000000	
27	*ELEMENTS	151		
28	1125	4		
22	0.000	-		

Residual Stress Model

• Three DEFORM input random variables were considered:

- Initial case: three-level full factorial design (Phase I results)
- > 27 training points combined residual and service stress results

Demonstration Example

- Anomaly at life limiting location (service stress)
- Computed response surfaces for the following:
 - Individual locations single response surfaces based on 27 training points each
 - Entire crack path 100 locations along crack path

Residual Stress

GP Response Surface at Location 1

Copyright 2013 Southwest Research Institute

65

60

55

50

45

Residual Stress

GP Response Surface at Location 100

Copyright 2013 Southwest Research Institute

Modeling the Stress Field Along the Entire Crack Path

- Principal Components Analysis (PCA) enables modeling of the variations in the high-dimensional stress field (100 locations) using a smaller number of coordinates (the principal components)
- The response surface models are used to relate the input variables to the principal components

One response surface for each principal component

$$RS_{1}: \mathbf{X} \to \alpha_{1}$$
$$\vdots$$
$$RS_{k}: \mathbf{X} \to \alpha_{k}$$

Project components back onto original space

Stress Field = $\mathbf{U}^{(k)} \boldsymbol{\alpha}^{(k)} + \boldsymbol{\mu}$

U^(k) contains first *k* eigenvectors of the covariance matrix μ is the stress field mean

Residual Stress Training Data (27 values) Along Crack Path

Principal Components Results

Probabilistic Analysis

• The three input variables were modeled as normally distributed random variables:

- Using Monte Carlo simulation, the random variables were propagated through the response surface
- The joint distribution of residual stress was identified at all 100 locations along the crack path

Random Residual Stress Results

Mean and variation at all locations

Visualizing Random Residual Stresses in DARWIN

DEFORM Training Data

95th Percentile Response

Sensitivity Analysis

 First order sensitivity index describes fraction of variance in output attributed to each input

$$V\left(E\left(Y \mid X_{i}\right)\right)/V$$

 Sensitivities are computed at each crack location

Summary: Random Residual Stress Modeling

• Design of Experiments

- Identify values of input variables for response surface construction in DEFORM using Latin Hypercube sampling
- Perform deterministic DEFORM runs to determine residual stress values at all nodes within FE model
- Response Surface Fitting
 - Determine the residual stress response at selected locations within the FE model in DARWIN using Gaussian Process (GP) model
 - Determine response along the crack path in DARWIN using GP model combined with Principal Components Analysis
- Monte Carlo Simulation
 - Propagate random variables through response surface in DARWIN to determine the random residual stresses along the crack path and influence on life and risk values

Design of Experiments

Response Surface

Incorporating Residual Stresses into Probabilistic Damage Tolerance Analysis

Juan D. Ocampo and Alexander Horwath

St. Mary's University

Scott Carlson

University of Utah, Salt Lake City

Luciano Smith

Southwest Research Institute

Surri

Harry Millwater and Nathan Crosby

University of Texas at San Antonio

Engineered Residual Stress Implementation Workshop 2017 Salt Lake City, UT, September 21–22, 2017.

- SMART DT Overview
- Residual Stresses Modeling Software
- Are RS needed in PDTA?

✓ Sensitivity Study wrt. Remaining Useful Life

Residual Stresses incorporated into PDTA

Deterministic Residual Stresses

Deterministic RS Profile

Probabilistic

RS Profile

✓ Future Plans

Residual Stress Modeling Software

- Standalone executable to read experimental/ simulated data and find the best deterministic and probabilistic fit parameters.
 - > 3 Models Available (Expandable)
 - > 2D (Stress vs Depth) and 3D (Stress vs Depth vs Thickness).
 - > Read input data in .txt & .csv format

Model I*

$$\sigma(x) = (ss - si + C_1 x) Exp(-C_2 x) + si$$

$$C_{1} = \frac{\left\{ (ss - si) \left(1 - Exp(-C_{2}B) \right) + siBC_{2} \right\} C_{2}}{(C_{2}B + 1)Exp(-C_{2}B) - 1}$$

Model II**

$$\sigma(x) = Asin(Bx + C)Exp\left(-\frac{x}{\lambda}\right)$$

> Model III (Polynomial Fit – Under Development) $\sigma(x) = Ax^5 + Bx^4 - Cx^3 + Dx^2 - Ex - F$

* User Manual for ZENCRACK[™] 7.1, Zentech International Ltd., Camberley, Surrey, UK, September, 2003.
** R. VanStone, "F101-GE-102 B-1B Update to Engine Structural Durability and Damage Tolerance Analysis Final Report (ENSIP), Vol. 2," General Electric, p. 5-2-2.

٦

 \times

IN100ResidualStressProfilesGUI

Input/Output

A2-1_stress.txt - Notepad				
File Edit	Format Vie	ew Help		
-1.928	0.254	0.000	-10.4	
-1.928	0.000	0.000	-16.8	
-1.928	0.252	0.000	-8.7	
-1.928	0.250	0.000	-6.5	
-1.928	0.248	0.000	-4.7	
-1.928	0.245	0.000	-3.2	
-1.928	0.243	0.000	-1.8	
-1.928	0.240	0.000	-0.7	
-1.928	0.237	0.000	0.2	
-1.928	0.234	0.000	1.1	
-1.928	0.231	0.000	1.7	
-1.928	0.228	0.000	2.3	
-1.928	0.224	0.000	2.7	
-1.928	0.220	0.000	3.0	
-1.928	0.216	0.000	3.1	
-1.928	0.212	0.000	3.1	
-1.928	0.207	0.000	3.0	
-1.928	0.202	0.000	2.9	

Mean and Standard Deviation Parameters

	Mean	St dev
SS	-879.16	58.58
si	205.68	9.448
c2	20.872	1.050

Correlation Parameters

	SS	si	c2
SS	1	-0.214	0.402
si	-0.214	1	-0.796
c2	0.402	-0.796	1

Are probabilistic RS needed in PDTA? Sensitivity Study wrt Remaining Useful Life

Random variable sensitivity wrt remaining useful life

Variable Name	Туре
Geometry (W)	Random
Geometry (t)	Random
Initial Crack Size (a)	Random
Initial Crack Size (c)	Random
Fracture Toughness (Kc)	Random
Residual Stress	Random
Paris Coefficients (C, m)	Random
Loading	Random
Walker m parameter	Deterministic
Stress Gradient (die out)	Deterministic
Threshold Kth	Deterministic

Parameter	Mean (m)	COV
W = 2t	0.5	10%
t	0.25	10%

12

Raw Data	Lognormal distribution with histogram and lognormal probability plot		
elliptical Crack	$LIN \sim (5.071, 0.25)$		
Depth $(a/c=1)$	Probability Density Function		
(um)	0.36 Lagnormal		
42.94	0.32 σ (0.21391 μ (38714		
43.98			
28.93			
48.63			
52.48			
60.26	0.16		
52.32	0.12		
47.82	0.08		
44.75			
59.34			
70.83	0 L 32 36 40 44 48 52 56 60 64 68 ×		
59.49	Histogram — Lognormal		
41.65	0.99		
56.68	0.98		
49.72	0.95		
41.01	0.90		
30.65	≥0.75		
45.40			
57.04	<u>g</u> 0.50		
52.90			
46.20	- 0.23		
49.53	0.10 +		
56.11	0.05		
60.08	0.02 +		
46.14	0.01 30 35 40 45 50 55 60 65 70		
30.60	Data		

Curve Section	С	m
ΔK > 13	1.602E-09	1.8753
9 < ΔK < 13	2.425E-20	11.3580
ΔK < 9	1.306E-07	-1.8293

SAS Code to find the regression parameters and the variation on the parameters (Using simple linear regression)

$$b = \frac{\log_{10}(C_1) - \log_{10}(C_2)}{n_2 - n_1}$$

13

Variable Amplitude Loading

Previous RS Sensitivity Study

Shot Peening Residual Stress Profile (Random)

$$\sigma(x) = (ss - si + c_1 x) Exp[-C_2 x] + si$$

$$C_{1} = \frac{\{(\sigma_{s} - \sigma_{i})(1 - Exp[-C_{2}B]) + \sigma_{i}BC_{2}\}C_{2}}{(C_{2}B + 1)Exp[-C_{2}B] - 1}$$

Mean and Standard Deviation Parameters

	Mean	St dev
SS	-879.16	58.58
si	205.68	9.448
c2	20.872	1.050

Correlation Parameters

	SS	Si	c2
SS	1	-0.214	0.402
si	-0.214	1	-0.796
c2	0.402	-0.796	1

Sensitivity Results

FRSI

Kic

t

0.0009

0.00009

8

9

т7

	$\overline{S}_{\theta} = \frac{\partial P}{\partial \theta} \cdot \theta$		$S_i = \frac{V_{X_i} \left(E_{X_i} \right)}{V}$	$\frac{(Y/X_i)}{(Y)}$	
	((ί	
Input variable	Sensitivity Value	Importance	Sensitivity Value	Importance	
C2	0.30	1	0.473479	1	
Si	0.18	2	0.329348	2	
Paris	0.16	3	0.150957	4	
Ss	0.09	4	0.198532	3	
ai	0.04	5	0.092150	5	
Loading	0.01	6	0.014135	6	
W	0.0026	7	0.003211	7	

Results are problem dependent

8

9

0.001111

1.11E-05

Residual Stress Effect on SFPOF Using Deterministic Residual Stress Profile

Residual Stress Effect on SFPOF

> SMART-AFGROW interface.

Input Parameters Deterministic RS Example

Corner crack @ hole	Devenator	Value	Mat. Prop.
1	Parameter	value	Walker Equation Data
⊢ w	Т	0.09 in	The Walker equation extended the early Paris equation by allowing the shift in details and the set of the set
	W	4.0 in	several segments to attempt to model the sigmoidal shape of the data.
	_		Use up to 5 sets of values of 'C', 'n', and 'm'
	D	0.25 in	Number of Sets: 1
			1 2,6300e-009 3,20000002 0.5
			2 1e-008 3 0.5
			3 1e-008 3 0.5
			4 <u>1e-008</u> <u>3</u> <u>0.5</u>
			Material name: User defined data
			Coefficient of Thermal Expansion: 1.249999968 Young's Modulus: 10600
			Yield Strength, YLD : 56.00000023 Poisson's Ratio: 0.330000011
			Plane Stress Fracture Toughness, KC: 100
			Plane Strain Fracture Toughness, KIC: 35 Lower limit on R shift (0., -1): 0.99
			Delta K threshold value @R=0: 2 Upper limit on R shift (< 1): 0.99
			OK Cancel Save Read Apply
L			

Random Variables	Value	
Fracture Toughness Distribution (Normal)	Mean = 34.5ksi \sqrt{in} , Standard Deviation = 3.8 ksi \sqrt{in} .	
Initial & Repair Lognormal Size Distribution (a & c) (Lognormal)	Mean = 0.01 in, Standard Deviation = 0.001 in.	
Extreme Value Distribution (Gumbel)	Location = 14.5 , Scale = 0.8 , and Shape = 0.0	
Inspections (5,000 & 10,000)	POD Lognormal Mean = 0.07in, Standard Deviation = 0.06	

Results without Inspections

Results without Inspections

Results without Inspections

ERSI Results with Inspections

Inducing RS at the Second Inspections

SMART Internal Crack Growth Code

An Ultrafast Crack Growth Lifing Algorithm for Probabilistic Damage Tolerance Analysis

Harry Millwater, Nathan Crosby University of Texas at San Antonio

> Juan D. Ocampo St. Mary's University, San Antonio

The Aircraft Airworthiness & Sustainment (AA&S) Conference Jacksonville, FL. May– 2018.

- Probabilistic damage tolerance analysis requires very small probabilities, e.g., 1E-9
- Previous methods allow for a deterministic crack growth curve and do not consider randomness in crack growth rate properties.
- Surrogate models, e.g., Kriging, can be used to speed up the analysis but are still very time consuming.
- Hence an ultrafast crack growth lifing code was developed.

- Create an equivalent constant amplitude from an arbitrary spectrum
- 2) Use an *internal* adaptive time stepping RK algorithm to grow the crack
- 3) Collect the top 100 (or so) damaging realizations for further examination and potential reanalysis

Thank you!!

jocampo@stmarytx.edu