Lifing Methods and Experimental Validation of Engineered Residual Stresses

2019 ASIP Conference, San Antonio, TX

Predict. Test. Perform.

Robert Pilarczyk Group Lead – Structural Integrity

Hill Engineering, LLC <u>rtpilarczyk@hill-engineering.com</u> Phone: 801-391-2682

Acknowledgements

- □ Thanks for your individual support:
 - Dr. Scott Carlson
 - Mr. Jacob Warner
 - Dr. TJ Spradlin
- Round robin participants
- □ Thanks to the ERSI Working Group for all your hard work!!!

Overview/Outline

ERSI overview & participants

Recent initiatives

- Round robin for Cx holes
- Cyclic redistribution
- Weapon system analyses
- Remaining gaps & key focus areas
 Conclusions

Engineered Residual Stress Implementation (ERSI) Working Group

□ Mission statement:

Develop a <u>holistic</u> paradigm for the <u>implementation</u> of engineered residual stresses into <u>lifing</u> of fatigue and fracture <u>critical components</u>

□ Key objectives:

- Define a common vision for the accounting of engineered residual stress at cold expanded fastener holes
- Provide a forum for the community to collaborate on new developments, best practices, and lessons learned
- Develop an implementation roadmap
- > Identify, define, and enable the resolution of gaps in the state-of-the-art

ERSI Working Group

Wide breadth of participation

- \succ Countries 5
- DoD Organizations 3 + FAA
- USAF ASIP Managers 10
- ➤ National Laboratories 2
- \blacktriangleright Universities 6

HILL

Predict. Test. Perform.

ENGINEERING

ERSI Working Group

Fatigue Crack Growth Analysis Methods Committee

- Purpose
 - Develop and document best practices for the integration of deep engineered residual stresses into the fatigue crack growth prediction methods used with the Damage Tolerance paradigm
- ➢ Key initiatives
 - Round Robin for Cx Holes
 - Best Practices Document
 - Engineering Implementation of RS
 - Analysis Methods, Tools, and Ground Rules
 - Cyclic Redistribution of RS
 - Crack Closure

- Material Behavior in RS Applications
- Filled Hole Applications (Taper-Lok, other)
- Weapon System Applications
- Durability Analysis Benefits
- Cx Hole Literature Survey
- Structures Bulletin Development

Historical

Residual Stress is considered a problem or used as a *band-aid* to address design deficiencies

Emerging

Residual Stress Engineering is a *conventional technology* that assures <u>performance</u>

Recent Initiatives

Round Robin for Cx Holes

Focus: Investigate the consistency, strengths and weaknesses of different analysis methods to define best practices moving forward

Input data

- Geometry
- ➢ Initial flaw size, shape, and location
- Material properties
- Loading spectrum
- Constraints
- Residual stress (contour results) [3, 4]
 - Average of replicates

Test data from:

ENGINEERING

Predict. Test. Perform.

- Carlson, Pilarczyk [1]
- ➤ Andrew, Clark, Hoeppner [2]

Round Robin for Cx Holes

□ Many participants with varying analysis approaches

# u	Key Modeling Factors										
nissio	Cx Cases 2 & 4										
	Software		Crack Definition								
Iqn	Lifing			# of Crack							
S	Software	FE Software	Crack Front Shape	Front Points	RS Incorporation Approach	Stress Intensity Calculation					
1	CPAT	Stre ssCheck	Multi-Point	30	Crack Face Pressure (B-Spline)	CIM-LC					
2	CPAT	Stre ssCheck	Multi-Point	20	Crack Face Pressure (Legendre Polynomial)	CIM-LC					
3a	AFGROW	N/A	Elliptical	2	2-D Gaussian Integration (Free Surface)	Classic Newman/Raju					
3b	AFGROW	N/A	Elliptical	2	2-D Gaussian Integration (5 degrees)	Classic Newman/Raju					
3c	AFGROW	N/A	Elliptical	2	2-D Gaussian Integration (10 degrees)	Classic Newman/Raju					
4g	NASGRO	N/A	Elliptical / Straight Thru	2	Bivariant WF	NASGRO CC10/TC13 Bivariant WF					
4h	NASGRO	N/A	Elliptical / Straight Thru	2	Bivariant WF	NASGRO CC10/TC13 Bivariant WF					
4i	NASGRO	N/A	Elliptical / Straight Thru	2	Univariant WF	NASGRO CC08/TC13 Univariant Wi					
4j	NASGRO	N/A	Elliptical / Straight Thru	2	Univariant WF	NASGRO CC08/TC13 Univariant Wi					
5	BAMF	Stre ssCheck	Multi-Point	11	Polynomial Fit Crack Face Pressure	CIM-LC					
6	AFGROW	N/A	Elliptical / Straight Thru	2	1-D Gaussian Integration (20% from free surface)	Classic Newman/Raju					
7	CPAT	StressCheck	Multi-Point	15	Crack Face Pressure (Legendre Polynomial)	CIM-LC					
8	BAMF	Stre ssCheck	Multi-Point	10	Crack Face Pressure (Legendre Polynomial)	CIM-LC					

AFGRO

analytical processes / engineered solutions

Round Robin for Cx Holes – Case #2

Cx centered hole - results

FRSI

HILL

Predict. Test. Perform.

ENGINEERING

Round Robin for Cx Holes – Case #4

Cx offset hole

HILL

Predict. Test. Perform.

ENGINEERING

© 2019 Hill Engineering, LLC hill-engineering.com

Round Robin for Cx Holes – Initial Observations

□ Cx hole summary (Cases #2 and #4)

➤ Fatigue life

- Consistent life predictions for NASGRO and coupled FEA-FCR approaches
 - Case #2 similar to Case #1, under-predicted experimental results (45-60%)
 - Case #4 predictions within range of experimental results
- AFGROW predictions utilizing <u>Newman-Raju solutions</u> with 1-D and 2-D Gaussian integration for residual stress were inconsistent with other predictions and experimental results
 - Significant over-prediction of observed experimental life Why???
- Mismatch of crack aspect ratio Why???

Round Robin for Cx Holes – Answering the Why's

Follow-on efforts

Focused on investigating prediction differences, answering the "Why's", documenting lessons learned, and refining best practices

□ Key focus areas

- Stress intensity contributions from remote and residual stress
- Residual stress variability
- Crack aspect ratio
- Negative R baseline test data
- Dissecting crack growth rate data

Round Robin for Cx Holes – Applied and Residual Stress Intensities

□ Post-dictions – Case #4

Accurate stress intensity solutions are critical

Round Robin for Cx Holes – Residual Stress Variability

□ Post-dictions – Case #2

≻ Mean

≻-1 StD

>+1 StD

>+2 StD

Round Robin for Cx Holes – Summary

- Overall, the round robin effort was quite beneficial highlighting the differences in various approaches
- With the exception of submission #6, which tended to be an outlier, all cases were consistent between similar approaches
- Multi-directional material data enabled more accurate aspect ratio predictions
- Publications
 - Presented at 19th International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics, May 2019
 - Publication in upcoming Special Issue on Fatigue and Fracture Mechanics for Materials Performance and Characterization

Crack Growth Curve Mismatch Investigation

- □ Most fatigue crack growth testing at CX holes has traditionally focused on lower stress ratios
- □ These data sets show a characteristic dip in crack growth rates
 - Crack propagation modeling efforts of the last several years do not capture this behavior
- \Box Dip only occurs when $R_{tot} < 0$
 - Hypothesis of crack closure
- □ Dip leads to inaccuracy in modeling

ENGINEERING

Predict, Test, Perform

da/dN (inch/cycle) 2.E-05 2.E-05 2.E-06

5.E-07

Crack Growth Curve Mismatch Investigation

□ Open hole Cx specimens pre-cycled 2000 cycles at test stress

Resulted in redistribution of stress

Predict. Test. Perform

Less compressive at the surface, compression extends further from hole

Redistributed Residual Stress Leads to Improved Modeling

- □ Same RS correlates well at $R_{app} = 0.8 (R_{tot} > 0)$
 - > No dip in da/dN test data when $R_{tot} > 0$
 - New RS captures this behavior as well

19

analytical processes / engineered solutions

APES, INC.

Residual Stress Redistribution

□ Why is the behavior not evident in teardown assets?

Residual Stress Redistribution

Next Steps

Complete initial investigate for standard configurations

□ Approach

- Investigate differences between:
 - non-cycled coupons
 - open hole cycled coupons
 - filled hole cycled coupons

Pre-cycling

Strain gage (1) coupon from each configuration to characterize changes during incremental increases in cycle stress levels

Residual Stress Measurement

- Complete contour method measurements of non- and pre-cycles coupons
- Compare/contrast results

Condition	Material	Thickness (in)	Width (in)	Hole Edge Margin	Pre-Cx Ream Diameter (in)	Applied Expansion	Post-Cx Ream Diameter (in)	Replicates
Non-Cycled	2024-	0.25	4.00	Centered	0.4755+/- 0.0005	Mid	0.4960-0.4985	3
Open Hole Cycled	T351							3
Filled Hole Cycled	1331							3
Non-Cycled	7075- T651							3
Open Hole Cycled								3
Filled Hole Cycled								3

Open Holes

Filled Holes

Condition	Loading	Strain Monitoring	Gauge Location	Max Stress (ksi)	Cycles	Replicates (each material)
Open Hole		Yes	Bore & Surface	10, 15, 20, 25, 30	2000/each	1
Cycled	CA	No	N/A	30	2000	2
Filled Hole	R=0.1	Yes	Surface	10, 15, 20, 25, 30	2000/each	1
Cycled		No	N/A	30	2000	2

Weapon System Analyses

Objectives

- Utilizing state-of-the-art methods and inputs, update DTAs for select Control Points (CPs), explicitly incorporating residual stress
- Compare/contrast with reduced flaw size predictions (partial credit)
- Identify gaps and refine best practices
- Define initial ground rules

□ Approach

ENGINEERING

Predict. Test. Perform

- Select candidate locations
- Review baseline input data/methods
- Complete baseline analyses
- Complete multi-point analyses w/ RS
- Compare/contrast predictions
- Provide conclusions and recommendations

Weapon System Analyses

□ Inputs and results

- Oversized conditions
- Variations in residual stress
- Variation in stress spectrum

tails	Location	Description	Material	Thickne ss (in)	Hole Size (in)	Edge Margin (e/D)	Max Stress (ksi)
Analysis De	1	Lwr Fwd Skin, WS 23 (SLEP)	2024- T3511	0.300	0.625	2.256	31.2
	2	Lwr Fwd Skin, WS 23 (Thick Skin)	2024- T3511	0.420	0.562	2.508	24.0
	3	Lwr Wing Skin at Mid Spar, WS 23 (SLEP)	2024- T351	0.300	0.328	1.981	42.4

lual ses	Location	New Manufacture Mean	Teardown mean	New Manufacture +2 Std	Teardown +2 Std	Manage To
sid es:	1	х	X*	х		х
Str.	2		х			
	3	х	х	х	х	

Location 1 Predictions

HILL

Predict. Test. Perform.

ENGINEERING

Location 2 Predictions Surface Crack Growth Life Comparisons 1.2 - - - Classic Model-0.05 IFS-SOLR=1.74-a/c constant - - Classic Model-0.005 IFS-SOLR=1.74-a/c constant 1 - BAMF-0.05 IFS-SOLR=2.5-Manage To RS Length (Inches) 0.8 0.6 Crack I 0.4 0.2 0 500000 1000000 1500000 2000000

Location 1 residual stresses

New Manufacture Average

Teardown Average

Location 3 Predictions

Time (Hours)

Weapon System Analyses

Conclusions

- Peak spectrum stress has a key influence on the life improvement at Cx holes
- Traditional DTA methods utilizing a reduced flaw size may be unconservative in some situations
- Cx benefit is significantly reduced for locations with peak spectrum stresses greater than 85% of the yield strength. Experimental results demonstrate minimal benefit.
- The residual stress utilized for analyses is critical for the predictions and must be considered closely, considering the impacts of in-service degradation and statistical variation

Remaining Gaps & Key Focus Areas

Additional round robin efforts

- Interference fit fastener RR about to be released
- Residual stress redistribution

Material characterization

- Increased breadth of materials
- Multi-directional material properties
- Negative R behavior
- □ Analysis input variability and uncertainty propagation

Other applications

- Taper-Lok installations
- Interference fasteners and bushing
- Weapon system specific demonstrations
- □ Finalization of new structures bulletin

Courtesy: Wordpress.com

Conclusions/Summary

Incrementally, we are making progress within the Analysis Methods and Validation Testing committees

- > Thanks to those individuals that have contributed
- We must continue to push forward with a focus on refining our analytical capability and addressing technical gaps while ensuring accuracy, identifying uncertainties, and maintaining acceptable levels of risk

Thanks for your attention

Any questions?

References

- 1. Carlson, S., Pilarczyk, R.T., "Using a Beta (β) Correction to Improve the Life Predictions of Cold-Expanded Holes in 2024-T351 and 7075-T651 Aluminum Alloys," Materials Performance and Characterization, Vol. 7, No. 4, 2018, pp. 779-806, https://doi.org/10.1520/MPC20170106
- Andrew, D.L., Clark, P.N., Hoeppner, D.W., "Investigation of Cold Expansion of Short Edge Margin Holes with Pre-Existing Cracks in 2024-T351 Aluminum Alloy," Fatigue Fract. Eng. Mater. Struct., Vol. 37, No. 4, 2014, pp. 406-416, https://doi.org/10.1111/ffe.12123
- 3. Prime, M.B., DeWald, A.T., "The Contour Method" Practical Residual Stress Measurement Methods, West Sussex John Wiley & Sons, 2013.
- 4. Northrop Grumman Corporation, "Residual Stress Measurements for the A-10 Thunderbolt Life-cycle Program Support (TLPS) ASIP Modernization III, Crack Growth Analysis in Residual Stress Fields", NG-0016-00030008-12-PLN, 2013.
- 5. Fawaz, S., Mills, T. "Round-Robin Testing, Fractography and Crack Growth Rate Data", 2017 AFGROW User Workshop, Layton, UT, 2017.
- 6. AFLCMC/WWA, "Analytical Considerations for Residual Stress, Best Practices and Case Studies", 2018-07-30_WWA-008_75 ABW-2018-0049, 2018.

