

Working Group on Engineered Residual Stress Implementation

### **Measurement Committee Summary**

(These charts are a team product.) **Dec 08, 2020** 

Mike Hill, committee lead mrhill@ucdavis.edu 530-754-6178 (work)

Eric Burba, committee co-lead Micheal.Burba.1@us.af.mil (937) 255-9795 (work)



# **Topics for Today**

## **Committee Logistics:**

- Typical Meeting Agenda
- Roster and Attendance

## **Topics of Note**

- Active work items
- Status and accomplishments
- Summary of technical elements

## **Opportunities Ahead**

- Applications at CHESS
  - Large hole coupons
- Continuation of active work
- Interactions with other ERSI Committees
- Interactions with field challenges



# **Meeting Agenda**

X:00-X:05 Welcome and agenda (Mike H)

X:05-X:10 Update from Process Modeling committee (Adrian)

X:10-X:15 Update from 2x2WG (Marcus)

### X:15-X:40 Old Business

- Project updates
  - Texture/Orientation/Anisotropy update (Mark, Mike S)
  - Exemplar Data Sets (Eric)
  - Large Hole Effort (Mike H and James)
- Potential activities at CHESS (Mark)
  - EDD for Large Hole coupons
- Documentation updates
  - Discussion of Best Practices Document updates

### X:40-X:55 New business

- Quick updates (All)
- Open discussion (All)
- ERSI 2020 Virtual Meeting: Nov 17-19, 2020
- RS Measurement goals discussion

X:55-X:58 Action items

X:58-X:59 Closing





# **Committee roster (recent changes in color)**

| Ana Ba<br>John Ba<br>Michael B<br>Dave B | Barrientos Sepulveda<br>Bourchard<br>Brauss<br>Breuer | Northrup Grumman Aerospace Systems<br>Professor of Materials Engineering Open University - Director of StressMap                             | . ,                              | david.backman@nrc-cnrc.gc.ca<br>Ana.BarrientosSepulveda@ngc.com<br>john.bouchard@open.ac.uk |
|------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|
| John B<br>Michael B<br>Dave B<br>Eric B  | Bourchard<br>Brauss<br>Breuer                         | Northrup Grumman Aerospace Systems<br>Professor of Materials Engineering Open University - Director of StressMap<br>Proto Manufacturing Inc. | 321-361-2049<br>44(0)7884 261484 | john.bouchard@open.ac.uk                                                                    |
| Michael B<br>Dave B<br>Eric B            | Brauss<br>Breuer                                      | Proto Manufacturing Inc.                                                                                                                     |                                  |                                                                                             |
| Dave B<br>Eric B                         | Breuer                                                |                                                                                                                                              | (734) 946-0974                   |                                                                                             |
| Eric B                                   |                                                       | Curtiss-Wright, Surface Technologies Division                                                                                                |                                  | mbrauss@protoxrd.com                                                                        |
|                                          | Burba                                                 |                                                                                                                                              | (262) 893-3875                   | Dave.Breuer@cwst.com                                                                        |
| Elizoboth D                              |                                                       | U.S. Air Force (AFRL - MAI Program Mgr - Materials & Manufacturing Directorate)                                                              | (937) 255-9795                   | Micheal.Burba.1@us.af.mil                                                                   |
|                                          | Burns                                                 | The Boeing Company - Research & Technology                                                                                                   | (314) 616-7405                   | Elizabeth.A.Burns5@boeing.com                                                               |
| Ralph B                                  | Bush                                                  | U.S. Air Force (Department of Engineering Mechanics, U.S. Air Force Academy)                                                                 |                                  | ralph.bush@usafa.edu                                                                        |
| Scott C                                  | Carlson                                               | Lockheed Martin Aero (F-35 Service Life Analysis Group)                                                                                      | (801) 695-7139                   | SCarlson01@gmail.com                                                                        |
| James C                                  | Castle                                                | The Boeing Company (Associate Technical Fellow BR&T Metals and Ceramics)                                                                     | (314) 563-5007                   | james.b.castle@boeing.com                                                                   |
| David D                                  | Denman                                                | Fulcrum Engineering, LLC. (President & Chief Engineer)                                                                                       | (817) 917-6202                   | david@fulcrumengineers.com                                                                  |
| Adrian D                                 | DeWald                                                | Hill Engineering, LLC                                                                                                                        | (916) 635-5706                   | atdewald@hill-engineering.com                                                               |
| Daniele Fa                               | anteria                                               | Dipartimento di Ingegneria Civile e Industriale                                                                                              | (+)39.050.2217266                | daniele.fanteria@unipi.it                                                                   |
| Leo G                                    | Garza                                                 | L3 Communications (RC-135 Fleet Manager)                                                                                                     | (903) 457-4595                   | leo.garzaiii@L3T.com                                                                        |
| Eric G                                   | Greuner                                               | Lockheed Martin Aeronautics - Integrated Fighter Group Airframe Stress and FEA                                                               | (817) 777-5453                   | eric.m.greuner@lmco.com                                                                     |
| Jim H                                    | Harrison                                              | Metal Improvement Company (Curtiss-Wright)                                                                                                   | 316.204.1076                     | james.harrison@cwst.com                                                                     |
| Mike H                                   | Hill                                                  | Hill Engineering, LLC                                                                                                                        | (530) 754-6178                   | mrhill@hill-engineering.com                                                                 |
| Andrew Jo                                | lones                                                 | U.S. Air Force (B-52 ASIP Structures Engineer)                                                                                               |                                  | andrew.jones.79@us.af.mil                                                                   |
| Eric Li                                  | indgren                                               | U.S. Air Force (AFRL - Materials and Manufacturing Directorate)                                                                              | (937) 255-6994                   | Eric.Lindgren@us.af.mil                                                                     |
| Marcias M                                | Martinez                                              | Clarkson University (Department of Mechanical & Aeronautical Engineering)                                                                    | (315) 268-3875                   | mmartine@clarkson.edu                                                                       |
| Teresa M                                 | Moran                                                 | Southwest Research Institue (SwRI)                                                                                                           | (801) 777-0518                   | teresa.moran@swri.org                                                                       |
| Mark O                                   | Obstalecki                                            | U.S. Air Force (AFRL - RXCM)                                                                                                                 | (937) 255-1351                   | mark.obstalecki@us.af.mil                                                                   |
| Sanjoo Pa                                | Paddea                                                | StresMap Ltd Director                                                                                                                        | 44 (0) 7590498409                | sanjooram.paddea@stress-map.com                                                             |
| Robert P                                 | Pilarczyk                                             | Hill Engineering, LLC                                                                                                                        | (801) 391-2682                   | rtpilarczyk@hill-engineering.com                                                            |
| James P                                  | Pineault                                              | Proto Manufacturing Inc.                                                                                                                     | (313) 965-2900                   | xrdlab@protoxrd.com                                                                         |
| Mike R                                   | Reedy                                                 | U.S. Navy (NAVAIR - Compression Systems Engineer)                                                                                            | (301) 757-0486                   | michael.w.reedy1@navy.mil                                                                   |
| Steven R                                 | Reif                                                  | AFLCMC/EZFS                                                                                                                                  | 937-656-9927                     | steven.reif@us.af.mil                                                                       |
| TJ S                                     | Spradlin                                              | U.S. Air Force (AFRL - Aerospace Systems Directorate)                                                                                        | (937) 656-8813                   | thomas.spradlin.1@us.af.mil                                                                 |
| Marcus S                                 | Stanfield                                             | Southwest Research Institute (SwRI)                                                                                                          | (801) 860-3831                   | marcus.stanfield@swri.org                                                                   |
| Mike S <sup>r</sup>                      | Steinzig                                              | Los Alamos National Labs - Weapons Engineering Q17                                                                                           | (505) 667-5772                   | steinzig@lanl.gov                                                                           |
| Kevin W                                  | Valker                                                | QinetiQ                                                                                                                                      | +61457002775                     | kfwalker@qinetiq.com.au                                                                     |



# **Summary of Meeting Attendance**

### Nov 18, 2020

**18, 2020** Breuer, Burba, DeWald, Lindgr **Example slide, March 11, 5** Obstalecki, Oliveira, Pineault, Sp. **March 11, 5** •

### Oct 14, 2020

• Backman, Breuer, Pineault, Oliveira, Bouchard, Burba, Martinez, Obstalecki, Hill

### Sep 9, 2020

Pineault, Burba, Obstalecki, DeWald, Harrison, Hill •

### Aug 19, 2020

Burba, Pineault, Stanfield, DeWald, Obstalecki, Hill

### **July 8, 2020**

Lindgren, Burba, Bouchard, Carlson, DeWald, • Pineault, Hill

### June 10, 2020

 Lindgren, Burba, Bouchard, DeWald, Obstalecki, Pineault, Spradlin, Oliveira, Hill

### May 13, 2020

Burba, Obstalecki, Carlson, DeWald, Pineault, Hill, • Backman, Steinzig, Bouchard, Harrison

### April 8, 2020

Harrison, Pineault, Burba, Hill, Hitchman (from Modeling group), Dave Breuer (CWST, guest of Harrison)

Win, DeWald, Carlson, Pineault, Obstalecki,

#### Sep 12, 2013 (shop)

• Pearce, Nyugen-Quoc, Barrientos, Greuner. Stanfield, Carlson, Bouchard, Dubberly, A Jones, Hitchman, DeWald, Steinzig, T Thompson, Pineault, Hill

### March 13. 2019

• Spradlin, Lindgren, Pineault, Brauss, Steinzig, DeWald, Carlson, Grodzicki (quest), Hill

#### Feb 6. 2019

Steinzig, Carlson, Penault, Grodzicki (guest), • Pilarczyk, DeWald, Hill

### Jan 9, 2019

Spradlin, Carlson, Pilarczyk, Burba, Obstalecki, • Lindgren, Martinez, Hill



# Update from Process Modeling Committee

#### Adrian DeWald is point person fostering interaction with the Process Modeling Committee

### New items (Adrian)

- Notes from last meeting (9/17/20):
  - Planning to finish the summary of the first round robin modeling acure.
    - + Results to be presented at December ERSI general meeting
- Example slide, typical meeting Holding on second round robin until after feedback from the December ERSI general meeting

### From prior discussions

- First simulation round-robin is to be reported 9/25
  - Publication being considered
  - New round-robin activity is planned, but on hold pending feedback
- There is an opportunity to work with other ERSI Groups on methods for data comparison and data assessment ٠
  - Basic questions:
    - + When we have different 2D stress fields from given sources (e.g., measurements of different types, and/or models of different types) what are useful ways to compare them?
    - + What are ways to assess uncertainty of 2D stress fields?
  - All groups have a stake in this area, but maybe these are key:
    - + Data Management and Quality Assurance (Kaylon Anderson)
    - + Risk Analysis and Uncertainty Quantification (Laura Hunt)
    - + Residual Stress Measurement (Mike Hill)
    - + Residual Stress Process Simulation (Keith Hitchman)



# Update from 2x2 working group

Marcus Stanfield is point person fostering interaction with the 2x2 working group (2x2WG)

### New items (Marcus)

- Synchrotron data from APS needs to be processed (need a set
- XRD needs elastic constant (XEC) determined ۰
- Example slide, typical meeting Neutron data from Japan is complete, Prof Bouchard preparing a publication ٠
  - Post-meeting question: can this data be shared (to be held in the Committee)?
- 2x2WG priority is publication

### From prior discussions

- Detailed update (Marcus, 19 Aug 20; see charts in email) •
  - Opportunity to measure non-reamed CX holes (contact Marcus)
    - + Limited to nondestructive measurements
    - + Potential opportunity with at CHESS (USAF has a funded program)
  - Opportunity to help with analysis of prior EDXRD data (contact Scott C)
- Updates at July meeting (Bouchard, Pineault) •
  - XRD data being worked on
  - Additional ND measurements active
  - Marcus Stanfield is current lead for this activity



# **Old business**

### **On-going project updates**

- Texture/Orientation/Anisotropy (Mark/Mike S)
  - Current status
- Exemplar Data Sets (Eric)
  - Current status
    - + Mike and Eric will develop a workflow for open publication of residual stress measurement data using DRYAD

Example slide, typical meeting

- Mike: data presented to the committee on June 10, 2020
- Eric: USAF data to be identified (likely for shot peened materials)
- + DRYAD as opportunity for sharing data
  - https://datadryad.org/
- Large Hole Effort (Mike H)
  - Current status
    - + James and Mike to provide update on recent measurement data in November

### Potential activities at CHESS (Mark)

- Potential application of Energy Dispersive Diffraction (EDD) to the A-10 Large Hole coupons (good tie in to standing work)
  - Mark and Eric have the action on this?



# **Old business (continued)**

### **Documentation updates**

- Current updates
- Umentation updates
  Current updates
  Please provide feedback on best practices documents
  Descrived some detailed feedback (thanks, James!) on the A-rossistical solution of the A-rossistical solutical solution of the A-rossistical solution of the A-rossisti
- Prior notes ٠
  - New journal publication related to ERSI: Andrew, DL, Han, H-C, Ocampo, J, Alaeddini, A, Thomsen, M. Characterization of residual stresses from cold expansion using spatial statistics. Fatigue Fract Eng Mater Struct. 2020; 1–14. https://doi.org/10.1111/ffe.13334
  - New journal paper on contour method reproducibility —
    - + Available for all to read at https://rdcu.be/b4KpF
  - USAF Best Practices document being opened for updates (A-10 program) "Analytical Considerations for Residual Stress Best Practices and Case Studies"
    - + Prior release available here: https://apps.dtic.mil/sti/citations/AD1084445
    - + Feedback and suggestions are welcome
      - Provide comments back to Mike Hill for relay to program
  - ASTM Task Group writing industry guidance document
    - + TG E08.04.06 Residual Stress in Structural Design and Sustainment (T.J. Spradlin, TG Chair)
  - Forthcoming USAF Structures Bulletin \_
    - + T.J. Spradlin accepting input
  - ERSI NDE/QA Committee is circulating a document framework for feedback \_
    - + Send input to Mike Hill, Eric Burba, or Kaylon Anderson kaylon.anderson@us.af.mil



# **Active work items**

### **Communications and collaboration within ERSI**

- 2x2 Working Group (2x2WG)
- Process Simulation Committee

### **Exemplar RS data sets**

### Large hole RS measurements

### Anisotropy and preferred orientation

• Assess how residual stress measurement techniques perform in processed metals (typical and atypical material conditions)

### **Outward facing documents**

- Develop measurement-specific documents
- Support overall ERSI documentation efforts
  - SB, A-10 Best Practices, ASTM, ASM
  - Focus currently on A-10 Best Practices
- List relevant publications and reports



# Status and accomplishments

### Established interfaces with other activities

- 2x2WG
- Process Simulation

# Developed plan for posting exemplar data sets in open data repository

### Developed RS data in large hole coupons

• Being discussed within Committee

### **Developed plan for studying anisotropic materials**

### **Contributed to outward facing documents**

- Engaged in developing draft material or revisions (ASTM, A-10 Best Practices)
- Noted relevant publications
  - Andrew, DL, et al., "Characterization of residual stresses from cold expansion using spatial statistics". *Fatigue Fract Eng Mater Struct*. 2020; 1-14. <u>https://doi.org/10.1111/ffe.13334</u>
  - D'Elia, CR, et al., "Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation". *Experimental Mechanics*, 2020, <u>https://rdcu.be/b4KpF</u>



# **Summary of technical elements**

## 2x2 working group (2x2WG)

Contact Marcus Stanfield

### Exemplar data sets: near surface stress profiles

Contact Eric Burba

## Large hole experimental work

Contact Mike Hill

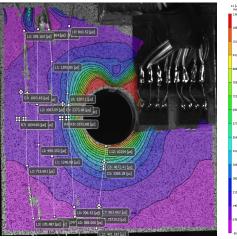
## Anisotropy and preferred orientation

Contact Mark Obstalecki



# **2x2 Working Group Overview**

## Schedule: 2016 - Ongoing


### Members

- Research, Industry, Academia
- Multiple committee participation

### Purpose

- Cx multiple aluminum alloys (2024-T351 & 7075-T651) at "Low" and "High" expansion levels for reamed and un-reamed configurations
- Characterize the residual stress/strain using multiple measurement techniques
  - Strain gauge, LUNA fiber optics, DIC
  - XRD, EDD, ND
  - Contour Method
- Develop a validation data set and framework for process simulations and NDI/QA
- Develop input data for FCG validation







## **Surface Strain Highlights**

**Multiple measurement cross validation** 

- **DIC/FEM comparison using MatchID**
- Validation metrics established (Zimmerman)

500

-500

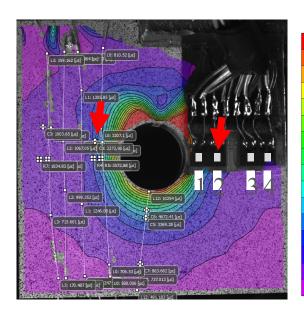
-1000

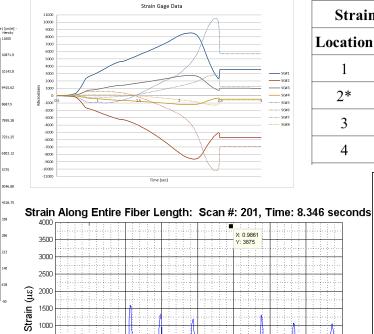
0.2

0.4

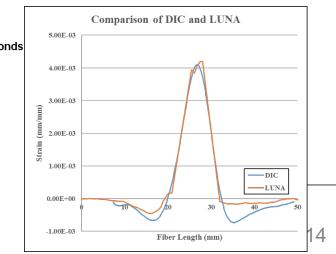
0.6

0.8


Fiber Length Location (meters)


1.2

1.4


1.6

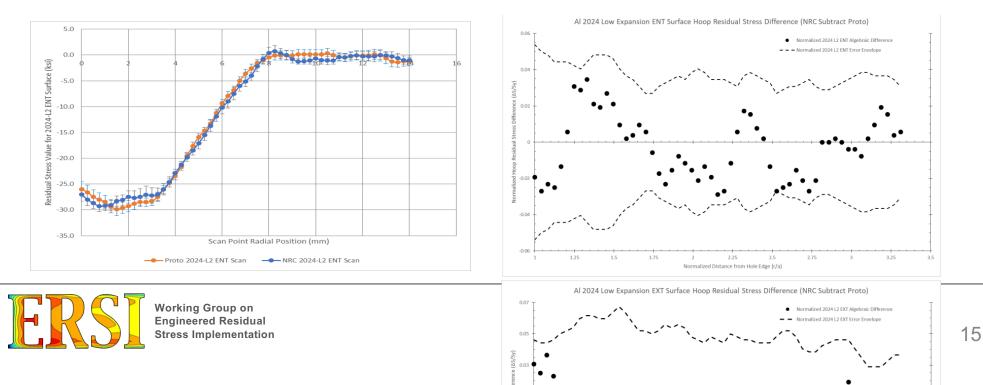
Multiple process simulation models (FTI/NRC)





| Strain Comparison: Gauge vs. DIC |           |           |       |  |  |  |  |  |
|----------------------------------|-----------|-----------|-------|--|--|--|--|--|
| Location                         | Gauge     | DIC       | %Diff |  |  |  |  |  |
| 1                                | 0.003571  | 0.003573  | 0.05% |  |  |  |  |  |
| 2*                               | -0.005699 | -0.005684 | 0.26% |  |  |  |  |  |
| 3                                | 0.000984  | 0.000969  | 1.54% |  |  |  |  |  |
| 4                                | -0.000459 | -0.000430 | 6.43% |  |  |  |  |  |



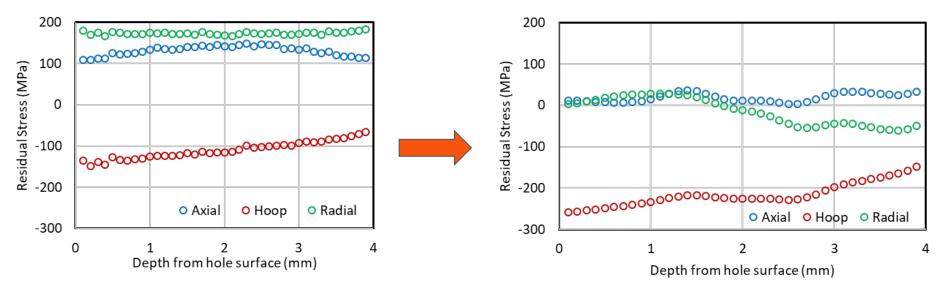



# **XRD Highlights**

Inter and Intra laboratory studies (NRC & Proto Mfg.)

Optimize data collection parameters and take advantage of circumferential strain fields around CX holes to further improve measurement accuracy & precision

XEC determination for the specific 2024-T351 & 7075-T651 product forms studied is currently in progress




# **ND Highlights**

# Work performed by OpenU, Stress Space Ltd., CEAM, JAEA

# Increased spatial resolution using a deconvolution algorithm

- Requires a thin foil for calibration
- Longer beam time





# **Status**

### **Progress made**

- Validation metrics and framework for simulation to data comparisons
  - Still to be discussed in committee
- XRD and ND "lessons learned" can be applied to similar applications
  - Accuracy improvements observed

## Work planned

- Additional ND and Contour Method measurements in Q1 & Q2 of 2021
- Residual stress data sets for FCG inputs should be established by Q4 2021
- Reamed coupons reserved for NDI and QA techniques
- Multiple journal papers in work

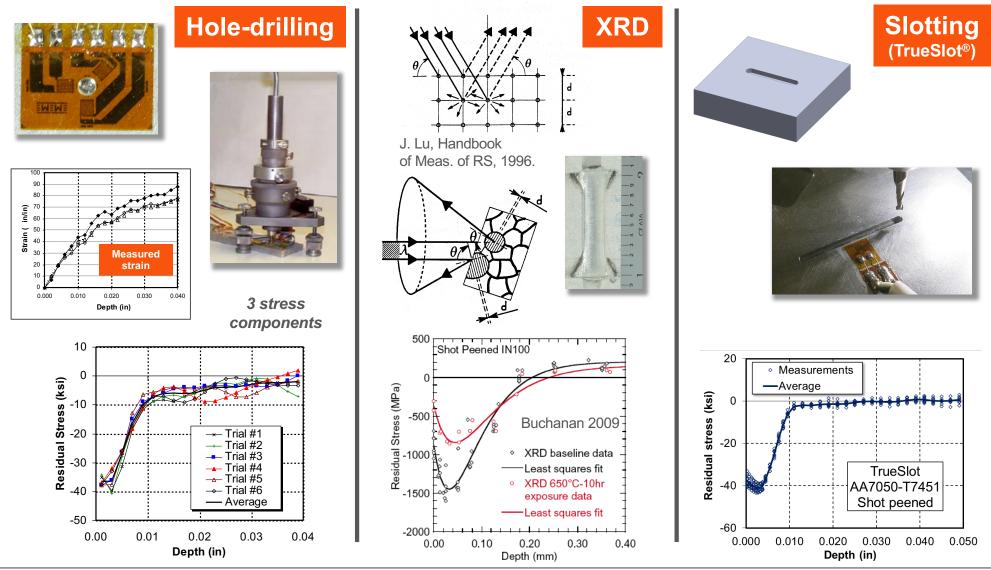


# Exemplar data sets: near-surface stress profiles

### **Exemplar data sets objective:**

- Identify examples of residual stress measurement data that are typical of good practice in aerospace materials
- Seek data showing comparisons of different experimental methods applied to the same parts or samples
- Post these data to an open repository for access by the community

### Methods:


- Identify data through committee members and their networks
  - Prior publications, contract reports, ERSI studies, et cetera
- Employ open data sharing platform
  - DRYAD <a href="https://datadryad.org/">https://datadryad.org/</a>
    - + Any field. Any format. Quality control and assistance. Community-led.
    - + Currently developing posting workflow

### First example: near-surface stress profiling

- Inter-method comparison of near-surface stress profiling
  - Ref: "Measurement of residual stresses near the surface of metals," M.R. Hill, A.T. DeWald, T.A. Wong, 10<sup>th</sup> European Conference on Residual Stresses, Leuven BE



## **Near-surface stress profiling methods**

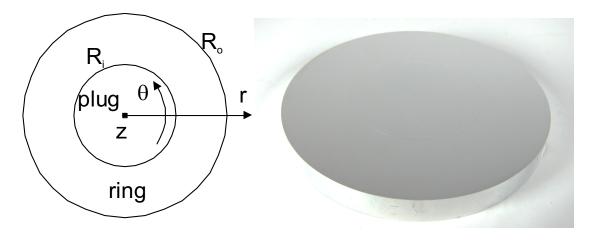


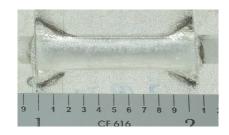


# Sample type 1: Ring and plug

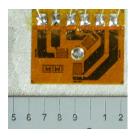
## **Ring and plug specimen**

- 2.0 inch diameter plug
- 4 inch diameter ring


## **Material properties:**


- AA2024-T351
- E = 10,400 ksi
- v = 0.33
- Expect -6.0 ksi stress in the plug equibiaxial

## **Measurement order**


- First: XRD
- Second: HD
- Third: slotting











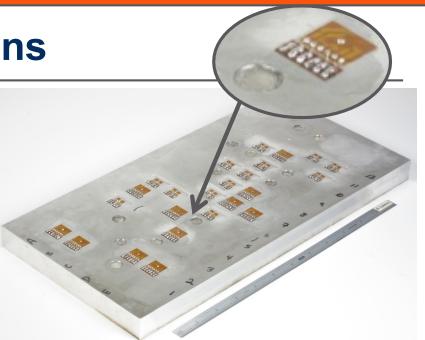
# Sample type 2: Plate specimens

## Nominally 15 x 7.5 x 1 inch (380 x 190 x 25.4 mm)

## Three plate conditions

- Shot peened AA7050-T7451
  - SAE 230-280 cast steel shot, 6 A, 200%
- Shot peened Ti-6AI-4V (mill-annealed)
  - SAE 170 cast steel shot, 6-9 A, 100%
- Quenched AA7050-T74

## 12 replicate measurements


Randomize locations

## **Measurement order**

- First: XRD
- Second: HD
- Third: slotting



| Description             | Material Properties                                     |  |  |  |
|-------------------------|---------------------------------------------------------|--|--|--|
| Shot peened Al<br>plate | Aluminum alloy 7050-T7451<br>E = 10,400 ksi<br>v = 0.33 |  |  |  |
| Shot peened Ti<br>plate | Titanium alloy Ti-6Al-4V<br>E = 16,500 ksi<br>v = 0.34  |  |  |  |
| Quenched Al plate       | Aluminum alloy 7050-T74<br>E = 10,400 ksi<br>v = 0.33   |  |  |  |



# **Ring and plug results**

### **Summary of results**

- Near uniform compressive RS
- Similar to expected value of -6 ksi •

### **Data analysis**

20

15

10

5

0

Residual stress (ksi)

-15

-20

0.000

Compute average and standard • deviation at set of depths

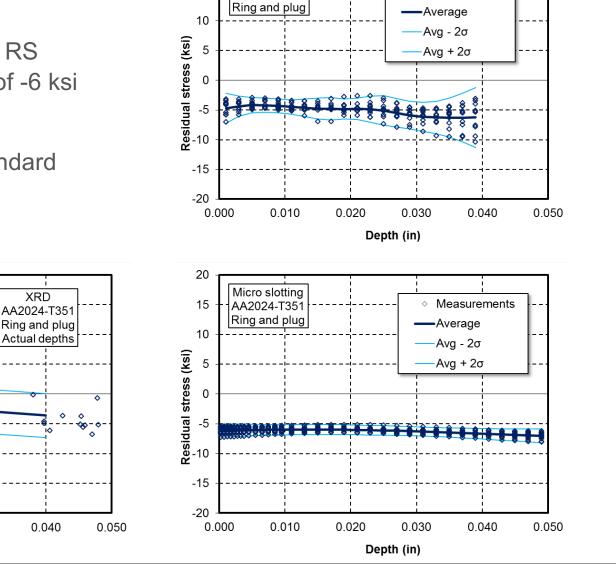
Measurements

٥

0.030

Depth (in)

°¦∕°


0.020

Average

Avg - 2σ

Avg + 2o

Use linear interpolation to • consistent depths



20

15

Hole drilling

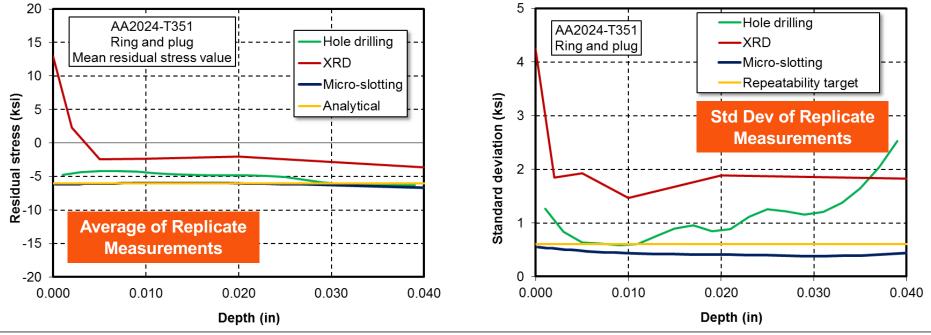
AA2024-T351

Measurements



Working Group on **Engineered Residual** Stress Implementation

0.010


# **Ring and plug results**

### **Comparison of average residual stress**

- Slotting closely matches expected residual stress
- Hole-drilling has similar shape, slightly different magnitude
- XRD has different surface value and sub-surface bias (different value)

### Residual stress repeatability (standard deviation) versus depth

 Slotting repeatability better than 0.5 ksi (average); hole-drilling somewhat higher, and XRD largest





# **Near-surface profiling study summary**

### **Documented repeatability of residual stress measurement**

- In relevant materials and stress states
- Summary data are tabulated below
- Full data to be posted on DRYAD

# Results show hole-drilling, XRD, and slotting provide similar results, with differences in bias and precision

• Results dependent on specific materials, geometry, stress state, and methods

|                        | Repeatability Std Dev (ksi)<br>Average 0.00 to 0.04 inch |     |          | Repeatability Std Dev<br>Normalized by Slotting |     |          |
|------------------------|----------------------------------------------------------|-----|----------|-------------------------------------------------|-----|----------|
| Specimen               | XRD                                                      | HD  | Slotting | XRD                                             | HD  | Slotting |
| Aluminum ring and plug | 2.2                                                      | 1.1 | 0.4      | 5.5                                             | 2.7 | 1.0      |
| Shot peened aluminum   | 2.5                                                      | 3.0 | 1.1      | 2.3                                             | 2.7 | 1.0      |
| Shot peened titanium   | 8.7                                                      | 3.7 | 4.1      | 2.1                                             | 0.9 | 1.0      |
| Quenched aluminum      | 2.0                                                      | 1.4 | 1.0      | 2.0                                             | 1.4 | 1.0      |



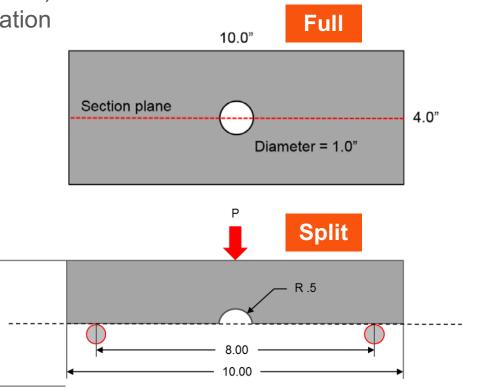
# **Large Hole CX Evaluation**

### Objective

- Develop a coupon that scales-up the stress field
- Develop and interrogate residual stress measurement data

W

- Full configuration
- Split configuration (split along 10" dimension)
- Develop crack growth data in split configuration


### **Coupon attributes**

- Large diameter
  - Maximize length scale of "near-surface" and "near-bore" regions
- Long enough to facilitate fatigue testing
- Wide enough to minimize edge margin effects

### **Material types**

- 7075-T651
- 2024-T351





# **Large Hole Status**

### Study design

• Complete (HE and A-10)

### **Coupon fabrication**

• Complete (HE)

### **Planned residual stress measurements**

- Contour: complete (HE)
- Hole drilling: complete (HE)
- XRD: complete (Proto)
- Comparison and assessment: in-process (Team)

## Fatigue crack growth testing of split samples

- Straight bend: complete (A-10)
- Corner bend: unknown

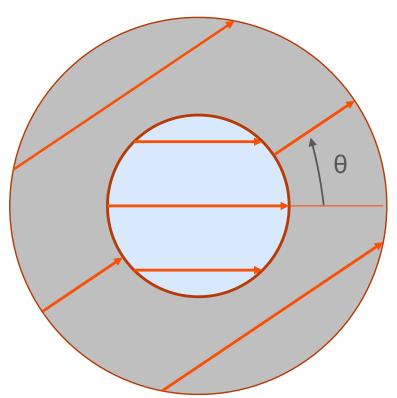
## Reporting

• To be defined





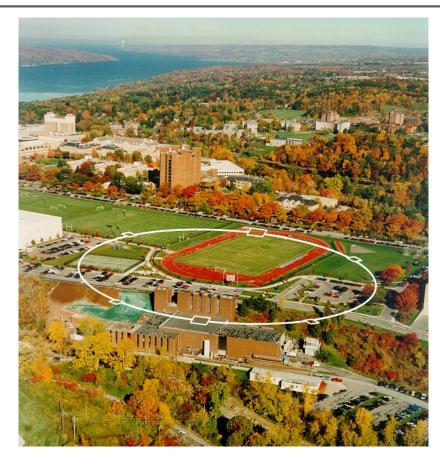



# **ERSI Texture & Anisotropy Team**

**Objective:** Incorporate elastic anisotropy into standard industry residual stress measurement workflows **Methods:** Develop combined modeling and experimental approach to (1) demonstrate impact of elastic anisotropy on current RS measurement techniques, (2) enable incorporation of microstructure into existing workflows, and (3) support round robin sample sharing **Schedule:** 

- Nov 2020 First 'official' biweekly meeting
- Dec 2020 LANL prepares ring/plug samples
- Jan 2021 AFRL begins hole drilling measurements
- FY21 Anisotropic FE ring/plug model development
- FY21 Measurement of 'optimized' anisotropic ring/plug samples

### Team:


- Mike Steinzig & Zac Sanchez Archuleta LANL
- Mike Hill Hill/UC Davis
- Mark Obstalecki & Eric Burba AFRL

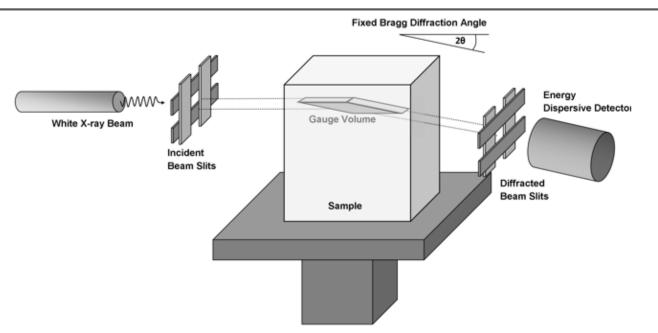


- Arrows indicate the dominate texture direction in each component
- Model anisotropic material properties to determine theta with the greatest effect on plug/ring interaction



# **Cornell High Energy Synchrotron Source**

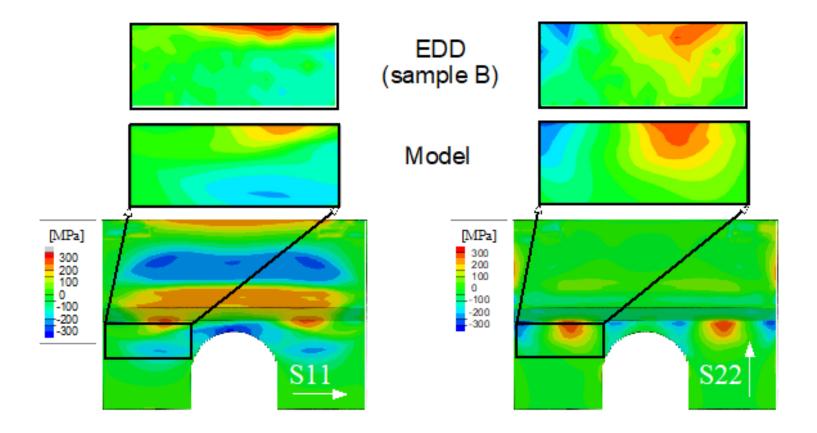



### Cornell University Ithaca, NY

## Synchrotron X-ray Menu

- High Energy Diffraction Microscopy (HEDM)
  - Far-field: grain average orientation, position, and strain
  - Near-field: grain orientation map
- Transmission Powder Diffraction
  - texture and strain pole figures
- Energy Dispersive Diffraction
  - volume averaged strain




# **Energy Dispersive Diffraction (EDD)**



- EDD enables measurement of spatially resolved distributions of strain in large volumes (in)
- Polychromatic x-rays ranging from 50-200 keV
  - Can penetrate through bulky samples & sample environments
- Measurement time: 60 sec to 30 min per point
- Works best with fine grained materials, but heavily textured materials can be problematic
- Energy sensitive point detector



## **Residual Stress Mapping Example**



Mach, et. al., JOM, (2017)



# **Summary and Future Opportunities**

### **Committee logistics**

### Active work

### **Opportunities in store**

- Applications at CHESS
  - Large hole samples
- Continuation of active work
  - Communications and collaboration within ERSI
  - Exemplar RS data sets
  - Large hole RS measurements
  - Anisotropy and preferred orientation
  - Outward facing documents
- Interactions with other ERSI committees
  - Leverage ERSI member experience
- Interactions with field challenges
  - AFRL Multi-point Fracture Mechanics program (MAI)
  - Bring us your problems!

