

AFRL

Nondestructive Evaluation for Quality Assurance and Surveillance of Cold-worked Fastener Holes

Eric Lindgren

Materials State Awareness Branch

Materials and Manufacturing Directorate

April 20, 2023

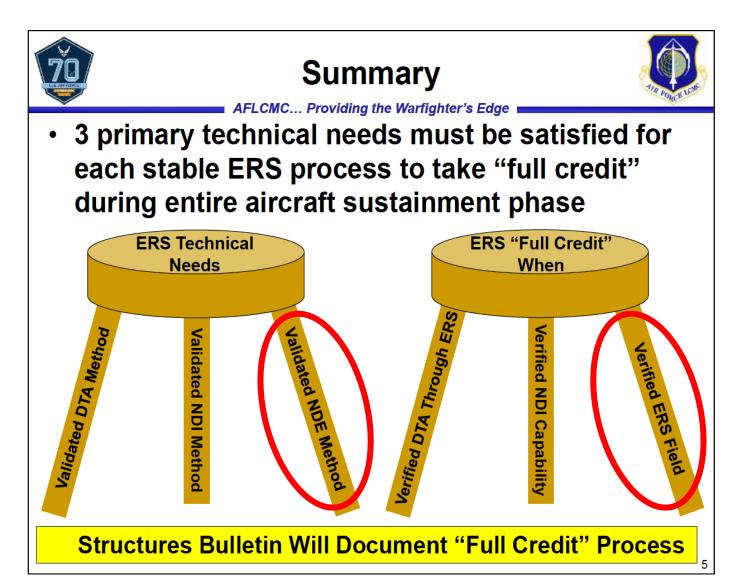
Acknowledgments – Contractor Team

Hill Engineering

- Josh Hodges
- Bob Pilarczyk
- Dallen Andrew
- Adrian DeWald
- **Southwest Research Institute**
- Clint Thwing
- Adam Cobb
- Nathan Richter
- Nikolay Alimov

Outline

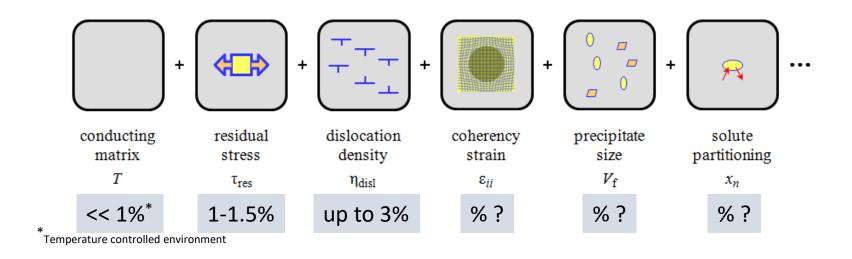
- Motivation / Impact
- Challenges
- Technical Approach
- Testing
- Results
- Summary
- Way Forward


Motivation / Impact

Motivation

- QA of Cx process to ensure residual stresses are present
- Verification residual stresses
 remain present during life

Impact

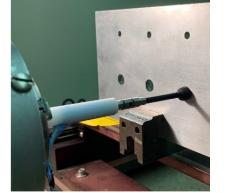

- Enhanced life management
- Extended inspection intervals

Briefing chart from Charles Babish, available at: http://www.meetingdata.utcdayton.com/agenda/asip/2017/proceedings/presentations/P13677.pdf

NDE of Residual Stress: Challenges

- Lots of factors affect measurement in addition to residual stress
 - Microstructural complications simplified with aluminum alloys
 - Macro-scale considerations: temperature and geometry
 - USAF considerations: manufacturing (e.g. fit-up stresses), maintenance, modification, repair, use
- Deconvolve or control as much as possible
- Maximize sensitivity analysis

Technical Approach



- Develop NDE techniques for quantifying the residual stress state at Cx holes
- Evaluate and rank NDE techniques for quantifying the residual stress state at Cx holes
- Investigate key confounding factors and their influence on NDE response
- Optimize NDE techniques for evaluation Cx holes
- Demonstrate the NDE techniques for evaluation of Cx holes
- Verify the NDE techniques for evaluation of Cx holes
- Sensing approaches explored:

Eddy Current Surface Probe L

Low Frequency Eddy Current

Four Coil In-hole Eddy Current Probe

Ultrasonic Longitudinal Critically Refracted Wave Probe

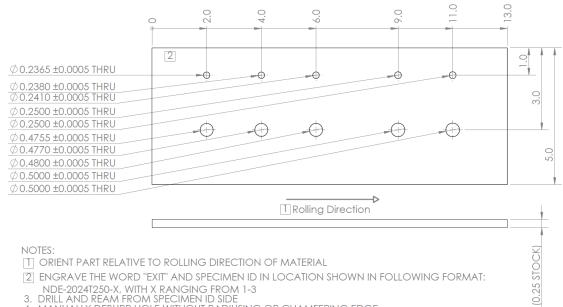
Program Goals

Desired performance:

- Geometry: open holes 0.25" and 0.5"
- Materials: aluminum alloys: 2024-T351 and 7075-T651
- Environment: field and Depot (plus manufacturing)
- Surface condition: minimal preparation
- Rapid data acquisition: prefer less than one minute
- Equipment: minimize specialize equipment
- Sensitivity: 90% detection of detect cold-worked holes (applied expansion of 3%)

Representative Depot Maintenance

Representative Manufacturing



Testing (Lots of Testing!)

Testing matrices included:

- Levels of cold work
- Hole diameters
- Confounding factors
- Variability
- Coupons •
- Extracted components
- In-Depot demonstration

DRILL AND REAM FROM SPECIMEN ID SIDE

4. MANUALLY DEBURR HOLE WITHOUT RADIUSING OR CHAMFERING EDGE

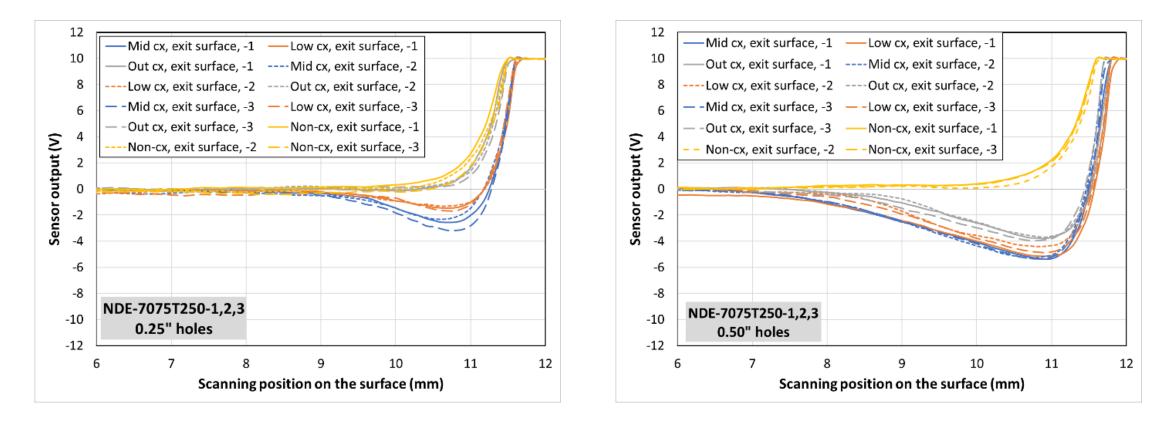
Representative multi-hole coupon machining drawing (0.250" thickness)

Evaluated Confounding Factors

Eddy Current centric

USSF

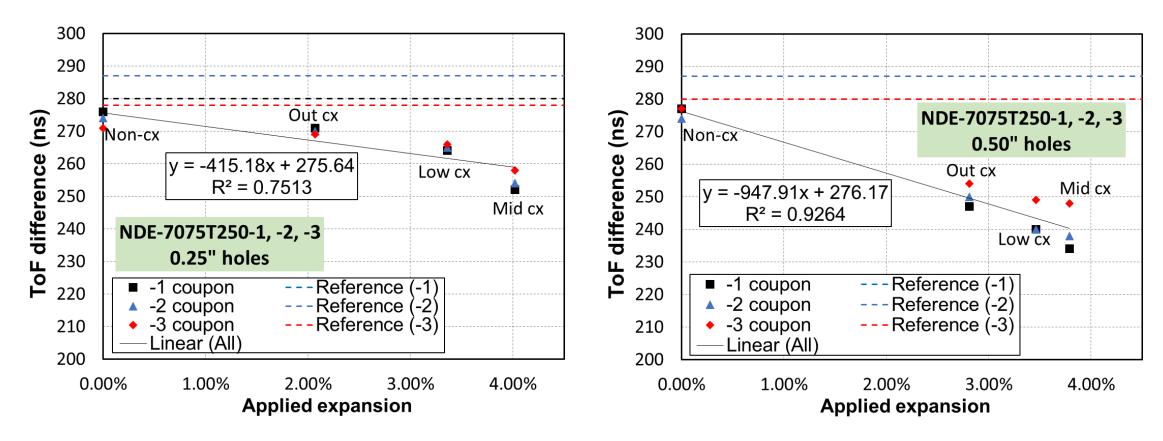
Factor	Influence on NDE response – ET
Electrical Conductivity: Global	High
Electrical Conductivity: Through Thickness Variation	Medium
Hole Diameter	Medium
Plastic Strain	Medium
Coatings/Paint	Medium
Hole Skew	Medium or Low
Operational Overloads	Medium or Low
Temperature Variation – Long Term Changes	Medium or Low
Temperature Variation – Short Term Fluctuation	Medium or Low
Acoustoelasticity	Low
Chemical Composition	Low
Cross-Section Changes	Low
Hole Edge Margin	Low
Hole Pitch	Low
Hole Roundness	Low
Microstructure – Global	Low
Microstructure – Local	Low
Static Loads	Low
Surface Corrosion	Low
Surface Flatness	Low
Surface Roughness	Low
Surface Treatment	Low
Thermal Conductivity	Low
Thermal Exposure	Low


Ultrasound centric

Factor	Influence on NDE response – UT
Acoustoelasticity	High
Coatings/Paint	High or Low
Chemical Composition	Medium
Hole Diameter	Medium
Hole Edge Margin	Medium
Hole Pitch	Medium
Microstructure – Global	Medium
Microstructure – Local	Medium
Operational Overloads	Medium
Surface Corrosion	Medium
Surface Flatness	Medium
Temperature Variation – Long Term Changes	Medium
Temperature Variation – Short Term Fluctuation	Medium
Cross-Section Changes	Medium
Thermal Conductivity	Low
Electrical Conductivity: Global	Low
Electrical Conductivity: Through Thickness Variation	Low
Hole Roundness	Low
Hole Skew	Low
Plastic Strain	Low
Static Loads	Low
Surface Roughness	Low
Surface Treatment	Low
Thermal Exposure	Low

THE AIR FORCE RESEARCH LABORATORY

Representative Result: Eddy Current Surface Probe



- Left: 7075 coupons with 0.250 inch thickness, 0.25 inch holes
- Right: 7075 coupons with 0.250 inch thickness, 0.50 inch holes

Representative Result: Ultrasound LCR Probe

- Left: 7075 coupons with 0.250 inch thickness, 0.25 inch holes
- Right: 7075 coupons with 0.250 inch thickness, 0.50 inch holes

Way Forward – Remaining Challenges

- Address effect of cold-work volcano
 - Impact of surface eddy current results
 - Potential effect on LCR time-of-flight
- Probe optimization
 - Frequency, geometry, durability, fixturing
- May need both approaches
 - Eddy current for QA post cold work of fastener hole
 - Ultrasound for quantitative surveillance during in-service
- Validation study
- Simplified integration into current NDE practice
- Data capture and storage (other programs underway to address this capability)

Summary

Current 6.2 funded effort realized objectives

- Leveraged NDE experience detecting residual stress
 Two potential approaches identified
- Surface scanning eddy current with differential coil
- Longitudinal critically refracted (LCR) ultrasound probe
 Lots of testing to support identified approaches
- Confounding factors, e.g. surface and sub-surface
- Reproducibility: repeated measures on similar conditions
- Variability: hole diameter, magnitude of cold work, and material

Solutions look favorable, but more development required:

Probe optimization

THE AIR FORCE RESEARCH LABORATORY

- Volcano effect
- Validation

Need for follow-on program

Discussion

Caelum Domenari

THE AIR FORCE RESEARCH LABORATORY

The IMx+: A Digital Thread Tool to Enable Effective ASIP

Presented by: Dallen L. Andrew, Ph.D. Co-Authors: Robert Pilarczyk & Josh Hodges Hill Engineering LLC

Digital Thread Definition

What is a Digital Thread?

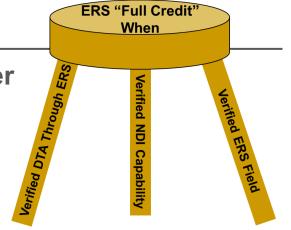
- Two-way line connecting engineering and maintenance (Mx) in a common data stream
- Required to extend from Mx action through Aircraft Structural Integrity Program (ASIP) engineering processes to development of an inspection interval published in tech data

What does a digital thread look like?

- It depends...
- Different scenarios require different levels of need for data capture
- Customized Data Fidelity Level (DFL) should be developed for different levels of need

Category	Source	Data Description
Cold Expansion DigitalEx	DigitalEx	Correlation to residual stress
		Pressure profile
	Go/No-Go indication (in/out spec)	
NDE UT/ET Probe	Cx Applied % Expansion	
		UT/ET response data
	Go/No-Go indication (in/out spec)	
NDI NORTEC		Screen capture
		Probe settings
	NORTEC	Clock position
		% screen height
	Final cleanup indication	
Location	iGPS	(xyz) coordinates for each device

DFL 1: One-off type repairs DFL 2: Depot-level repairs DFL 3: Major modification programs


Digital Thread Definition

For cold expansion (Cx) of fastener holes, digital thread data must answer critical ASIP questions to qualify for full credit:

- **1.** Was Cx accomplished at the correct location?
- 2. Was Cx accomplished (go/no-go)?
- 3. Is the ERS validation traceable?
- 4. Has NDI/NDE been accomplished?
- 5. What are analysis requirements for full credit?

For NDI process, digital thread data must provide essential data for evaluating inspection:

- Automatically capture and store inspection data (not just pass/fail) to support NDI and engineering
- Identify critical layers and crack locations for stack-ups
- Identify correct location of Mx in aircraft coordinates

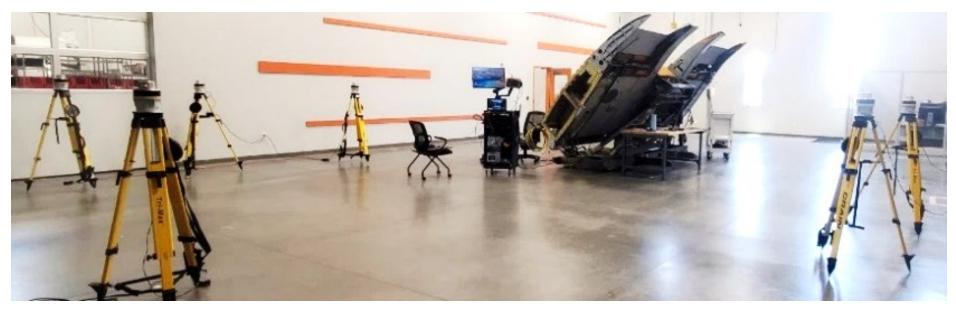
Category	Source	Data Description
Cold Expansion DigitalEx	DigitalEx	Correlation to residual stress
		Pressure profile
	Go/No-Go indication (in/out spec)	
NDE UT/ET Probe	Cx Applied % Expansion	
		UT/ET response data
	Go/No-Go indication (in/out spec)	
NDI NORTEC		Screen capture
		Probe settings
	NORTEC	Clock position
		% screen height
	Final cleanup indication	
Location	iGPS	(xyz) coordinates for each device

DFL 1: One-off type repairs DFL 2: Depot-level repairs DFL 3: Major modification programs

Digital Thread Tools to Enable Effective ASIP

Hill Engineering continues to support multiple USAF-sponsored programs targeted to support digital thread tools to enable an effective ASIP

- Data Spatial Positioning \rightarrow Integrated Maintenance System (IMx+)
- Digital Thread Tools for NDI Applications of IMx+
- Spatial Registration of NDE Sensors in Enclosed Locations

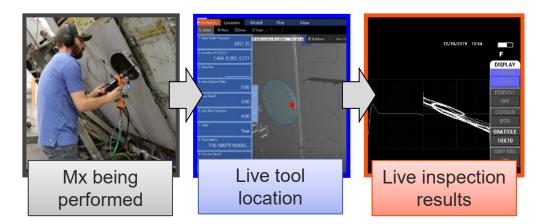


ERSI

Digital Thread Tools to Enable Effective ASIP

Integrated **\$** Maintenance System+

© 2023 Hill Engineering, LLC hill-engineering.com 5

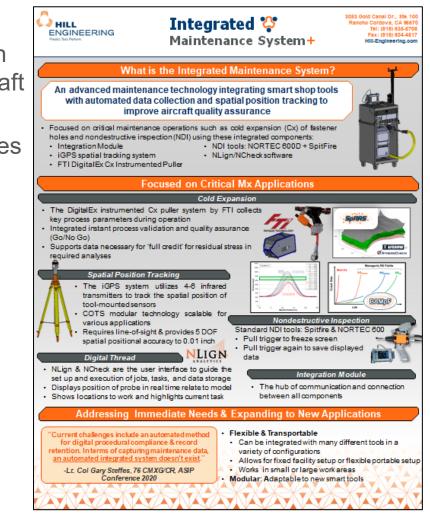


Stated Need

"Current challenges include an automated method for digital procedural compliance, importing digital NDI equipment outputs & interfacing with legacy maintenance processing systems. In terms of capturing maintenance data, an automated integrated system doesn't exist." -Lt. Col Gary Steffes, 76 CMXG/CR, ASIP Conference 2020

Objectives

- Create a digital thread for fastener holes that builds & maintains process records for NDI & Cx using commercial <u>Data Spatial Positioning (DSP)</u> technologies to leverage in structural integrity management
- Assist maintainer with real-time position feedback
- Digitally capture NDI and Cx results and submit results automatically
- Cybersecurity accreditation to integrate with the USAF NIPRNet
- Simplify the maintenance, inspection and reporting process

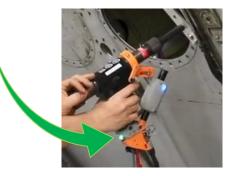


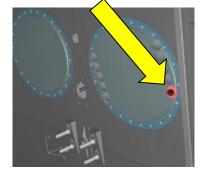
Introduction to the IMx+ system

- An advanced maintenance technology integrating smart shop tools with automated data collection and spatial position tracking to improve aircraft quality assurance
- Focused on critical maintenance operations such as Cx of fastener holes and NDI using these integrated components:
 - Integration Module
 - iGPS spatial tracking system
 - FTI DigitalEx Cx Instrumented Puller
 - NDI tools
 - NLign/NCheck software

Integration Module [Hill Engineering]

- The hub of communication and connection between all components
- All the physical and digital signals are combined and managed
- Integrates location and maintenance/inspection results for upload to the digital thread directly from within the USAF network
- Adaptable to new smart tools

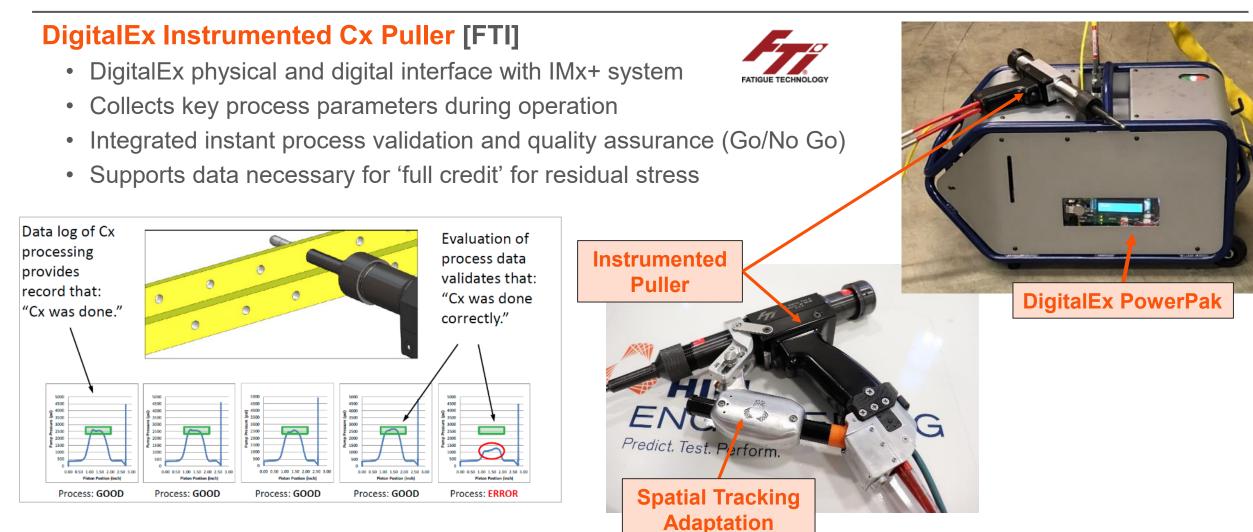



Spatial Position Tracking [7D Kinematic Metrology]

- iGPS infrared laser off-the-shelf modular technology
- Coverage area: Scalable for small to large production facilities
- Utilizes 4-6 infrared transmitters to track the spatial position of tool-mounted sensors
- Requires line-of-sight & provides 5 DOF spatial positional accuracy down to 0.01 inch

Add-on: Integrated Feedback to Maintainer

- LED lights indicate if tool is:
 - In correct fastener hole (green)
 - Within 2 diameters of correct hole (yellow)
- Live display of tool location



Inclusion of additional modular spatial position tracking technologies

NDI Tools

- NORTEC + SpitFire + MiniMite
- EVi + ECS-3 + ECS-5
- EPOCH 650

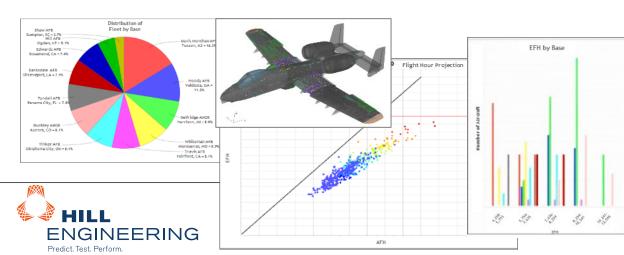
ENGINEERING

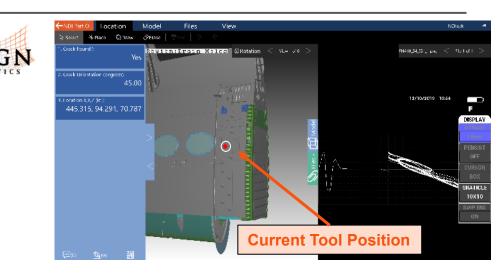
Predict. Test. Perform

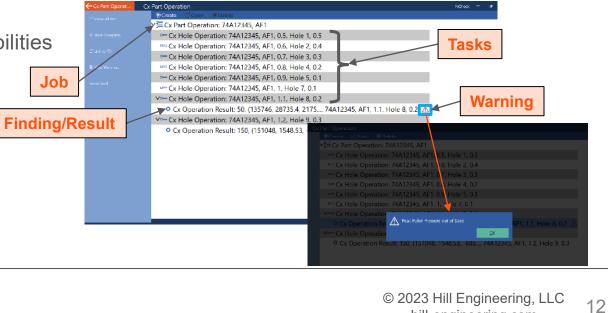
- Physical and digital interface between NDI tool and IMx+ system
- NDI data stream capture
 - Screenshot automatically saved to hole location with trigger pull
 - Automatically tracks/saves defect layer
 - Automatically populates inspection data based on screenshot

NORTEC 600D Instrument

NO MORE SNEAKERNET TO CAPTURE NDI DATA!





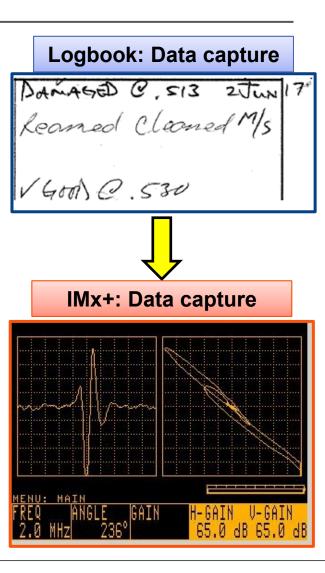

© 2023 Hill Engineering, LLC hill-engineering.com 11

User Interface and Digital Thread [NLign Analytics]

- NCheck
 - User interface for maintainers for the execution of jobs and tasks
 - Shows locations to be worked and highlights current task •
 - Displays what operations have been completed and the results
 - Captures location and operation results automatically
- NLign
 - User interface for engineering to guide the set up of jobs and tasks
 - Digital thread and full data repository
 - Extensive data analytics, visualization, and mapping capabilities
 - Trending of fleet statistics based on user inputs

hill-engineering.com

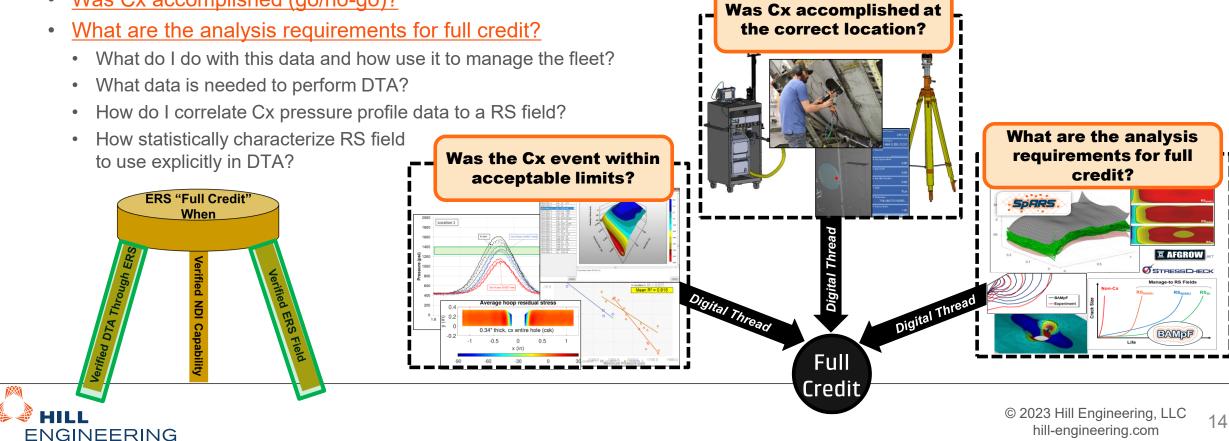



Why IMx+ for NDI?

- Automatically capture critical data to support NDI and engineering
- Identify critical layers and crack locations for stack-ups
- Estimated 50% reduction in time to document inspection results
- Estimated 20% reduction in inspection time through real time feedback

A-10: Why do we want IMx+? ►►

- Meets MIL-STD-1530D requirements
- Automates data entry and upload (faster and easier for inspector)
- Improves inspection value by saving inspection data, not just pass/fail
- Includes Mx location in aircraft coordinates
- Identifies correct location of Mx

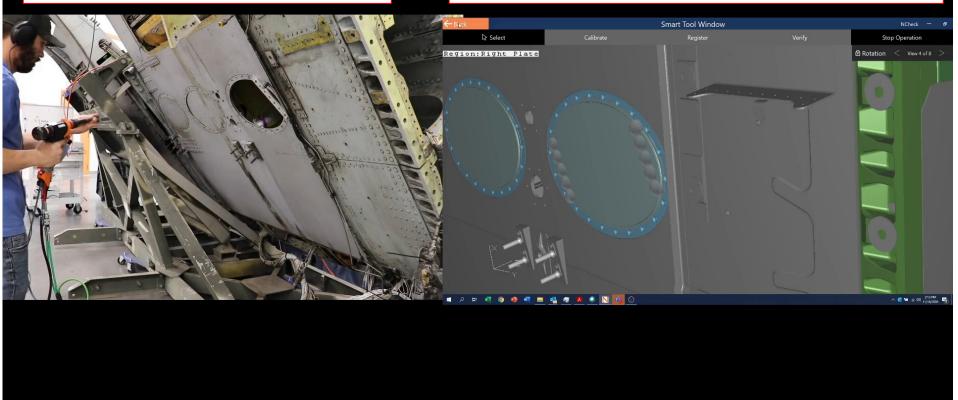


Why IMx+ for Cx? **>>** Establishing the Cx digital thread **>>**

- Address next-step-questions faced by ASIP to develop inspection intervals & answers <u>critical questions</u> required for RS full credit
 - Was Cx accomplished at the correct location?
 - Was Cx accomplished (go/no-go)?

Predict. Test. Perform

Required to extend from Mx action through ASIP engineering processes to development of an inspection interval to be published in tech data



Digital Thread Tools: IMx+ System ►► Cx Demo

Technician working

Live display on Integration Module

© 2023 Hill Engineering, LLC hill-engineering.com 15

Digital Thread Tools: NDI Applications of IMx+

Design, develop, test, and demonstrate adaptations of USAF standard NDI tools for use with IMx+

- Automate data capture from the NDI tool
- Retrofit current USAF NDI tools with a spatial tracking sensor
- Output captured NDI data to user-defined database
- Update user interface for expanded use for all users
- Perform on-site demonstrations of NDI automated data capture capabilities and deliver IMx+ system
 - Candidate 1: Hill AFB & A-10 application
 - Candidate 2: B-1 Full Scale Fatigue Test

ENGINEERING

Predict, Test, Perform

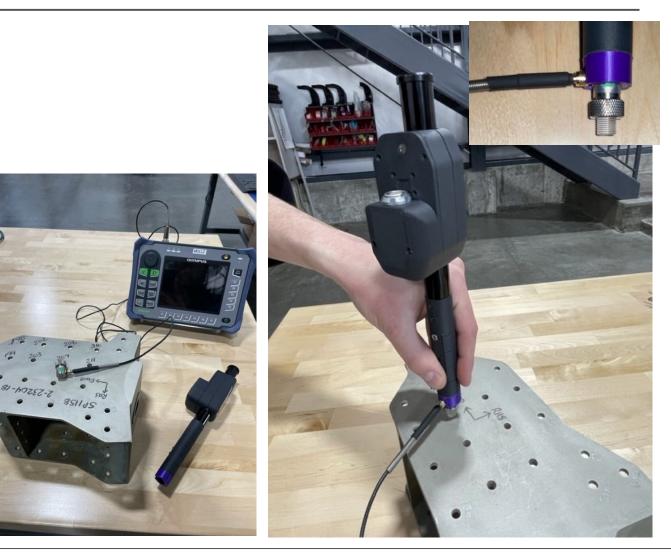
Integration and Validation Testing

EVi testing

• Spatial position tracking functioning with ECS-3 and ECS-5

Integration and Validation Testing

Digital bore gauge testing


© 2023 Hill Engineering, LLC hill-engineering.com 18

Integration and Validation Testing

EPOCH 650 development

- Leverage existing Space Pencil for spatial tracking
- Adaptable tips for various UT probes
- Real-time tracking of position
- Video and dataset of position of data from EPOCH

Digital Thread Tools to Enable Effective ASIP

QUESTIONS?

https://hill-engineering.com/our-work/introducing-the-imx/

