

ENGINEERED RESIDUAL STRESS IMPLEMENTATION (ERSI) WORKSHOP 2018

Date:September 13 – 14, 2018Location:Weber State University's Center for Continuing Education,
775 University Park Blvd., Clearfield, UT 84015

Thursday September 13 Agenda:

- 07:00-07:30 Arrive, Breakfast
- 07:30-07:45 Welcome
 - Dr. Scott Carlson, Mr. Robert (Bob) Pilarczyk, Mr. Dallen Andrew

Presentations by Leads Covering Progress:

- 25 min Presentation with 15 mins for Discussion

- 07:45-08:00 **Integrator Review Programmatic Overview and Roadmap** - Dr. T.J. Spradlin (USAF – AFRL)
- 08:00-08:40 Residual Stress Process Simulation
 - Mr. Keith Hitchman (Fatigue Technologies Incorporated (FTI))
- 08:40-09:10 **Quantification of Residual Stresses Through Measurement Techniques** - Dr. Adrian DeWald (Hill Engineering, LLC.)
- 09:10-09:50 **Fatigue Crack Growth Methods with Inclusion of Residual Stresses** - *Mr. Robert (Bob) Pilarczyk (Hill Engineering, LLC – Utah Branch.)*
- 09:50-10:00 BREAK
- 10:00-10:40 Verification and Validation of Analytical Methods Through Test
 Dr. Tom Mills (Analytical Processes/Engineering Solutions, Inc. (AP/ES))
 10:40-11:20 Effects of Engineered Residual Stresses on Non-Destructive Inspection
 - Mr. John Brausch (USAF AFRL)
- 11:20-12:00 Quality Assurance and Data Management for the Inclusion of Residual Stresses
 - Dr. Carl Magnuson (Texas Research Institute/Austin, Inc.(TRI-Austin))
- 12:00-13:20 LUNCH

13:20-14:00 Uncertainty Quantification and Risk Analysis with the Inclusion of Residual Stresses

- Mr. Lucky Smith, Ms. Laura Domyancic (Southwest Research Institute (SwRI))
- 14:00-15:00 **Open Discussion**

15:00-17:30 Breakout Discussions (Block 1)

- Analytical Methods for Residual Stress Integration into Fatigue Predictions and Testing and Validation of Analytical Methods Combined
- Residual Stress Process Simulation
- Impact of Deep Residual Stress on Non-Destructive Inspection (NDI) Methods

Friday September 14 Agenda:

- 07:00-07:30 Arrive, Breakfast
- 07:30-10:30 Breakout Discussions (Block 2)
 - Residual Stress Measurements
 - Analytical Methods for Residual Stress Integration into Fatigue Predictions and Testing and Validation of Analytical Methods Combined
 - Quality Assurance and Data Management
 - Risk Analysis and Uncertainty Quantification
- 10:30-13:00 **Open Discussion and Lunch** (*Lunch to be provided by Hill Engineering Utah Branch*)
 - Review
 - Future Planning
 - Governance
 - Funding

1300 We Bid You Adieu and Thank You!

Welcome to the 2018 ERSI Workshop

- Thank you all for coming!
 - Food and Funding
- Restrooms and Break Area are Upstairs
- Internet is Provided for Free as a Guest
- Agenda and Proposed Discussion Format
- Purpose Focused Discussion
 - Closing the gaps
 - Developing the documents
- ERSI Website

Overview of Working Group Structure

Purpose of ERSI Workshop

- 1. To identify and <u>lay out a road map for the implementation</u> <u>of engineered deep residual stress</u> which can be used in the calculation of initial and recurring inspection intervals for fatigue and fracture critical aerospace components.
- 2. To highlight gaps in the stat-of-the-art and define how those gaps will be filled.
- 3. Then to define the most <u>effective way to document</u> <u>requirements and guidelines</u> for fleet-wide implementation.

Vision of ERSI Working Group

Within 3-7 years have developed a framework for fleet-wide implementation of a more holistic, physics-based approach for taking analytical advantage of the deep residual stresses field, induced through the Cold Expansion process, into the calculations of initial and recurring inspection intervals for fatigue and fracture critical aerospace components. Then move from there to other deep residual stress inducing processes, like Laser Shock Peening, and Low Plasticity Burnishing.

Residual Stress Process Simulation Subcommittee Progress Report

Engineered Residual Stress Implementation Workshop 2018 Layton, Utah, USA September 13, 2018

Outline

- Subcommittee Activity
- Material Testing and FEA Model Validation
- 2" x 2" Coupons: Further preliminary correlations

Subcommittee Activity

- Three teleconferences
 - March June
- Material model coupon fabrication and testing
- 2" x 2" Coupon Correlation Study
 - Measurements (i.e., XRD)
 - Presentations (i.e., ASTM)

Material Model Testing Purpose of Program

Material Model Testing Purpose of Program

Figure 7 – (a) Flow curves tested, (b) resulting hoop residual stress ($\sigma_{\theta\theta}$); note log scale on x/R

Ribeiro, Renan L., and Michael R. Hill. "Residual Stress From Cold Expansion of Fastener Holes: Measurement, Eigenstrain, and Process Finite Element Modeling." Journal of Engineering Materials and Technology 139.4 (2017): 041012. <u>https://doi.org/10.1115/1.4037021</u>

Material Model Testing General Plan

- Based upon E606 LCF, up to ±4% in./in., reduced to ±1.5%
- Isolating current investigation to orthotropy
- Non-stabilized cyclic loading capturing reverse-yield behavior (2024 currently, 7075 to follow)
- Testing was to be complete Fall 2017, actually completed late Spring 2018.

Material Model Testing Test Results

- FTI fabricated 10 each T, L and 45° specimens from plate provided (same lot as 2" x 2" coupons).
 - Issue: Poor transition on one side of specimen
 - Issue: specimen design (grip, gauge length) not conducive to high (~4% strains).
- NRC worked through issues to provide an excellent body of data.

Material Model Testing

FATIGUE TECHNOLOGY

Material Model Testing Preliminary Abaqus Model Calibration

Material Model Testing Preliminary Abaqus Model Calibration

Material Model Testing Preliminary Abaqus Model Calibration

FATIGUE TECHNOLOGY

Material Model Testing Abaqus Model Calibration Results

Chaboche Parameter	Long.	Trans.	45°	Avg.	Clausen, et. al.*
σ _{ys} , psi	30281	28942	32786	30670	31894
C, psi	7.35e6	8.69e6	8.19e6	8.08e6	9.74e6
Ŷ	346.88	412.96	399.09	386.31	412.0
Q, psi	21202	21042	20526	20923	23637
b	3.37	3.85	5.53	4.70	7.00
E, psi	10.56e6	10.36e6	11.10e6	10.67e6	10.62e6
E	0.33	0.33	0.33	0.33	0.33

* public.lanl.gov/clausen/Clausen_et_al_PrePrint_SEM_2009.pdf

DM#808860

FATIGUE TECHNOLOGY

RS Process Simulation Validation Purpose of Program

- Perform Experiments to Capture Surface and Through-Thickness Strains for FEA Process Simulation Validation
 - Quantification of residual stresses through process simulation is a critical path for future ERSI realization
 - Perform Residual Stress Validation Through Comparison of Techniques
 - Limited open literature on cross-comparison of residual stress measurement methods for Cx holes
 - Potential to complement through-thickness techniques with surface techniques for a more accurate understanding of the complete residual stress field
 - Current work underway through Process Simulation Subcommittee, with the kind assistance of the <u>Organization and Execution Group</u>:
 - Dr. TJ Spradlin (AFRL)
 - Keith Hitchman (FTI)
 - Dr. Marcias Martinez (Clarkson U.)
 - Marcus Stanfield (SwRI)
 - Prof. Michael Fitzpatrick (Coventry U.)

- Scott Carlson (SwRI)
- Dr. Min Liao (NRC)
- Dr. Guillaume Renaud (NRC)
- Dr. Mike Hill (Hill Engineering)

RS Process Simulation Validation Test Plan (evolved)

- Material: 2024-T351 & 7075-T651
- Two Applied Expansion Levels: "Low" (3.16%), "High" (4.16%)
- Center Hole Diameter: 16-0-N Tool Set
 - 0.50inch final diameter
 - Hole not reamed
- Finite Element Analysis (various material models)
- Surface Measurement (Exit and Entrance Surfaces)
 - Digital Image Correlation (DIC)
 - Fiber Optics (LUNA)
 - Strain gages
 - X-ray Diffraction (XRD)
- Volume (Through-Thickness) Measurement Techniques
 - High Energy X-ray Diffraction (APS HE-XRD) Argonne National Labs
 - High Energy X-ray Diffraction (CHESS) Cornell
 - Neutron Diffraction Coventry University (UK)
 - Contour Method Hill Engineering, LLC

RS Process Simulation Validation Surface Strain Measurements

- Tabular surface strain measurement data available for correlation:
 - Luna (M. Martinez, Clarkson University)
 - Strain Gage (M. Stanfield, SWRI)
- Working on revised FEA with NRC-based Chaboche
- Full correlation to follow.

DIC Hoop strains

FEA Hoop strains Chaboche Hardening (Clausen)

DIC Radial strains

FEA Radial strains Chaboche Hardening (Clausen)

Solid Lines – Entrance

Dotted Lines – Exit

Solid Lines – Entrance

Dotted Lines – Exit

FATIGUE TECHNOLOGY

FATIGUE TECHNOLOGY

RS Process Simulation Validation Volume Strain Measurements

- Raw data still being evaluated and reduced.
- All results and correlations shown are to be considered preliminary examples, and may likely change

RS Process Simulation Validation APS Preliminary Radial Strain

RS Process Simulation Validation APS Preliminary Radial Strain

7075-L1 Isotropic AA7075-L1 {200}

RS Process Simulation Validation APS Preliminary Hoop Strain

7075-L1 Combined AA7075-L1 {200}

FATIGUE TECHNOLOGY

RS Process Simulation Validation APS Preliminary Hoop Strain

AA7075-L1 {200}

FATIGUE TECHNOLOGY

RS Process Simulation Validation APS Preliminary Radial Strain

FATIGUE TECHNOLOGY

RS Process Simulation Validation APS Preliminary Radial Strain

RS Process Simulation Validation APS Preliminary Radial Strain

RS Process Simulation Validation APS Preliminary Hoop Strain

2024-L2 Combined AA2024-L2 (i1) {311}

DM#808860

RS Process Simulation Validation APS Preliminary Hoop Strain

FATIGUE TECHNOLOGY

RS Process Simulation Validation APS Preliminary Hoop Strain

AA2024-L2 (i1) {311}

RS Process Simulation Validation CHESS Preliminary Radial Strain

RS Process Simulation Validation CHESS Preliminary Hoop Strain

Residual Stress Process Simulation Sub Committee

Dr. Scott Prost-Domasky, Analytical Processes/Engineering Solutions (AP/ES), Inc. Dr. Guillaume Renaud, National Research Council Canada Dr. Ralph Bush, United States Air Force Academy Marcus Stanfield, Southwest Research Institute Dr. Min Liao, National Research Council Canada Dr. Marcias Martinez, Clarkson University Dr. Adrian DeWald, Hill Engineering, LLC Dr. Keith Jones, Jones Engineering, LLC Robert Pilarczyk, Hill Engineering, LLC Dr. Mike Hill, Hill Engineering, LLC Matt Shultz, Fatigue Technology

Olym ic Peninsula

Chair: Keith Hitchman

Project Engineer, Analyst Fatigue Technology **khitchman atiguetech.com** Phone: +1-206-701-7232 Mobile: +1-509-948-8240

FATIGUE TECHNOLOGY

36 DM#808860

Measurements Su -grou date

To ics or Today

Contour method round ro in

Measurements o residual stress at legacy versus new C holes

Residual stress uality system

Large C hole e eriments

Measurements Su -grou date

Contour Method Round Robin

Organi ation: Scott Carlson, Marcus Stan ield, Mark Thomsen

• Efforts by 6 participating labs (mix of industry, government, academia)

Pur ose: Provide initial assessment o contour method interla oratory re eata ility

- Contour consists of cutting, measuring, data analysis, stress analysis
- Current focus on data analysis and stress analysis

A roach

- Subject is an elastic-plastic bent beam (prior benchmark)
- Multi-phase program of blind analyses (participants don't interact)
 - 1. Pure calculation, using simulation derived stress field and surface data
 - 2. Controlled experiment
- For each phase:
 - Provide same data sets to all participants (surface profiles)
 - Request submission of estimated residual stress field
 - Assess submissions
 - Discuss results
 - Document findings

Phase descri tion

- Context is a simulation of an elastic-plastic bent beam
 - Classical residual stress experiment used for method validation
- Simulation performed by SwRI
 - Bend beam in four-point configuration
 - Cut beam (remove symmetry constraints)
 - Extract surface profile of deformed surface
 - Add noise
- Send to surface profiles to participants for blind analysis
- Collect and assess results returned
 - Compare submissions to simulation benchmark (known stress)

Photo of experimental set-up corresponding to simulation

Phase results

- Given the same input data, participants return results very similar to the benchmark simulation stress field
 - RMS difference with benchmark better than 2 ksi
 - Some participant results had localized differences in stress
 - Consistent with those labs using approaches with less smoothing

Phase uses e erimental data

Work nearly complete

Measurements Su -grou date

Legacy vs New CX Residual Stress Evaluations

Note: this is an excerpt taken from here:

Co-Authors

Tremendous team su orting rogram:

- A-10 & T-38 Aircraft Structural Integrity Teams
 - Dr. Mark Thomsen
 - Dr. Mike Blinn
- Air Force Research Lab
 - Dr. Pam Kobryn
 - Scott Wacker
- Southwest Research Institute (SwRI)
 - Dallen Andrew
 - Dr. Scott Carlson
- Hill Engineering
 - Dr. Mike Hill
 - Dr. Adrian DeWald

Program Overview A roach

Overview

• Investigate cracking and residual stress at Cx holes from retired fleet assets to understand if there is a degradation over time as a result of loading or environment

A roach

- Full A-10 wing teardown disassembly, NDI, fractography, RS measurement
- Residual stress measurements of legacy assets (A-10/T-38)
- Residual stress measurements of newly manufactured specimens
 - Replicate legacy asset configurations
- Compare/contrast residual stresses between new manufacture and teardown coupons

History o Teardown Assets

A- asset

- (1) Center Wing Assembly
- · Location details:
 - Lower wing structure (skins/spars)
 - 2000 series aluminum
 - Production and depot rework Cx
- Usage details:
 - Predominantly tension loads 40-85% FTY (peak)
 - Negligible compression ~ -5 ksi
- Service history:
 - Service life: 33 years
 - SLEP: 2004
 - Retirement: 2012
 - Average usage severity
 - Moderate EFH

□ T- assets

- ➤ (3) Wing Assemblies
- Location details:
 - Lower wing skin
 - 7000 series aluminums
 - Production and TCTO Cx
- Usage details:
 - Predominantly tension loads 35-70% FTY (peak)
 - Negligible compression ~ -10 ksi
- Service history:
 - Service life: 12-26 years
 - Retrofit Cx: 1999-2002
 - Retirement: 2006-2010
 - Mix of severe and moderate usage
 - Moderate High EFH

Disassem ly Teardown

ull A- Center ing teardown

- Sectioning
- Fastener removal per USAFA PASTA
- Coating removal
- Non-destructive inspections
- Failure Analysis
 - Only (1) confirmed crack at Cx hore
- T- ings reviously torn-down
 - Excised coupons received for program

Residual Stress Measurement Plan – A-

A roach

- Cover the scope of A-10 lower wing fatigue critical locations
- Lower skins and spars

Primary considerations:

- Range of peak stresses
- Production and rework Cx
- Varying thicknesses
- Varying hole sizes
- Production vs. rework holes

Sco e o Measurements

- 146 teardown holes
- 72 new manufacture holes

Residual Stress Measurement Plan – T-

A roach

- Wing #SP900
 - Breadth of locations
- Wings #SP353 and #SP648
 - Variability between wings

T- rimary considerations:

- Fatigue critical locations
- Range of peak stresses
- Production & field Cx
- Varying thicknesses

Sco e o Measurements

- 57 teardown holes
- 33 new manufacture holes

Location	SP 353 RHS	SP 648 LHS	SP 648 RHS	SP 900 LHS	SP 900 RHS
А	Cuts between holes	Hole oversized 0.31"	2 holes damaged	Hole removed	Good
В	Good	Good	Good	Good	Hole OS 0.26''
C	Damage to 3 holes	Removal near hole	Good	Good	Good
D	Good	Cut near hole (0.5'')	Good	Good	Cut right of hole, 1.48"
Е	Good	Hole dmg, OS 0.32''	Cut near hole, minor dam	Good	Cut below hole, 0.35"
F	Good	Cut left of hole, 1.45"	Cut right of hole (1.35")	Cuts 1.25", hole damage	Cut Left 1.52" Left
Ġ	Cut near 3 of 6 holes	Cuts near 3 of 6 holes	Cuts near 2 of 6 holes	Good	Majority Removed
Н	Good	Good	Good	Good	Good
Ι	Good	Good	Good	Good	Cut Between 296, 297
J	Compromised	Good	Good	#198, #210 dmg	Compromised
К	Good	Good	Good	Cut 1.16" below, above	Good
L	Cut 7/8" near hole	Good	Good	Good	Cut right of hole, 0.5"

Teardown Measurement Results – A-

Teardown Measurement Results – T-

New Manu acture Measurement Results

New vs. Teardown Com arisons

hat is considered signi icant

Level I Analysis - Com arison Results A- Section R . P

Sample ID	Midthickness 0.125*rad (ksi)	Midthickness 0.25*rad (ksi)	Midthickness 0.5*rad (ksi)	Midthickness 0.75*rad (ksi)	Depth at crossover (midthickness) (in)	Point Value of Entrance (ksi)	Avg RS in 0.05" Radius Entrance (ksi)	Point Value CSK Knee (ksi)	Avg RS in 0.05" Radius CSK knee (ksi)
Mean	-47.15	-31.04	-12.29	-2.60	0.13	-51.30	-34.67	-77.92	-44.59
Stdev	5.17	4.10	2.71	2.99	0.04	21.61	6.68	16.67	10.37
Mean	-52.82	-32.95	-10.82	-0.19	0.10	-49.72	-31.57	-98.82	-55.33
Stdev	3.68	3.91	3.91	3.65	0.02	21.46	3.05	14.72	2.64
Residuals (Td-NM)	5.68	1.91	-1.46	-2.42	0.03	-1.58	-3.09	20.90	10.74
P Value	0.00	0.13	0.15	0.05	0.02	0.43	0.08	0.00	0.00
Significant	Yes	No	No	Yes	Yes	No	No	Yes	Yes

-30

σ_{zz} (ksi)

0

30

-60

-90

Level I Analysis - Com arison Results T- Section C

Sample ID	Midthickness 0.125*rad (ksi)	Midthickness 0.25*rad (ksi)	Midthickness 0.5*rad (ksi)	Midthickness 0.75*rad (ksi)	Depth at crossover (midthickness) (in)	Point Value of Entrance (ksi)	Avg RS in 0.05" Radius Entrance (ksi)	Point Value CSK Knee (ksi)	Avg RS in 0.05" Radius CSK knee (ksi)
Mean	-42.64	-26.04	-6.11	4.67	0.07	-41.00	-40.14	-76.26	-31.94
Stdev	4.81	6.48	3.85	1.83	0.01	18.30	2.85	11.50	3.94
Mean	-59.31	-38.63	-15.11	-2.53	0.10	-48.86	-49.02	-101.18	-49.57
Stdev	5.80	3.56	1.65	2.51	0.01	19.58	4.44	12.11	4.67
Residuals (Td-NM)	16.67	12.59	9.01	7.20	-0.03	7.86	8.87	24.92	17.63
P Value	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.00	0.00
Significant	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes

Summary o Com arisons

Conclusions

E tensive rogram com leted which rovides insight into residual stress o retired leet assets

residual stress measurements accom lished

Teardown vs. new manufacture comparisons

Signi icant residual stress remained in all evaluated teardown locations

• No "missed Cx" locations

Initial level I com arisons com lete

Comparable stresses observed between teardown and new manufacture coupons with significant
overlap

A "Manage To" residual stress profile may be a practical approach for incorporation into SA DTAs

+2 Stdev

MORE ORK TO DO

- · Wealth of information within dataset
- · How do these results impact fleet management decisions?

Measurements Su -grou date

Residual Stress Quality System

Note: this is an excerpt taken from here:

cerpt e:		Overview of residual stress measurement in industry applications			
		June 6, 2018			
	Distribution A: Approved for public release; distribution is un (Ref. # 88ABW-2018-2999)	limited.	Thermal Processing In Motion Residual stress workshop June 5-7, 2018 Spartanburg, SC, USA		

Acknowledgements

Authors: Adrian De ald and Michael Hill

Colla orators

- Much of this work is closely linked to recent programs that involved collaboration with the following organizations and individuals
 - Pratt & Whitney: Iuliana Cernatescu, Dave Furrer, and Bob Morris
 - Arconic: Mark James, John Watton, Dave Selfridge, Dustin Bush, and Brandon Bodily
 - Lockheed Martin: Dale Ball and Mark Ryan
 - Air Force Research Laboratory: Bill Musinski, Mike Caton, and Reji John

Residual stress in design and manu acture

Historical design a roach: residual stress is a known unknown

- Remove where possible (thermal or mechanical stress relief)
- Conservatively manage effects on degradation (fatigue, SCC, creep)
 - Conservative assumptions (i.e., tensile residual stress fields)
 - Inspect, repair, replace
 - Costs escalate with system age
- Take minimal credit for beneficial compressive residual stress

Emerging design a roach: residual stress art o s eci ications

- Known residual stresses in parts (requires measurements, models, and validation metrics)
- Include residual stress in materials and process engineering
 - Trade studies
 - Quality program
- Directly account for residual stress effects on performance

Motivations or residual stress control

- The ollowing are some common e am les o residual stress related concerns during rocurement and design
- Concern: tensile residual stress causing remature/une ected ailure
 - Desire a material/part that has low-magnitude residual stress
 - I.e., avoid putting outlier residual stress parts into service
- Concern: large and/or inconsistent residual stress levels im acting machining
 - Desire a material/part that has consistent or low-magnitude residual stress

Concern: ensure resence o ene icial com ressive residual stress

- Desire local regions of compressive residual stress in critical locations from engineering processes
 - · Also avoid high levels of compensating tensile residual stress

Residual stress in ormation low

E am le: manu acturing machining models

C- end itting orging

Part descri tion

- Material: 7085-T7452
- Die-forging
- Varying amounts of cold work: 0% to 4%
 - 1% to 5% is "acceptable" for production
 - 16 parts manufactured

Part Number	Job Number	Average Cold Work	Pressure
GA120276	HM14L10	0.0%	N/A
GA120276	HM14L11	0.0%	N/A
GA020276A	HM14L07	1.4%	9.9
GA020276A	HM14L02	1.4%	9
GA020276B	HM14L01	1.6%	9.6
GA020276B	HM14L08	1.8%	10.1
GA020276	HM14L03	3.0%	14
GA020276	HM14L04	3.0%	14
GA020276	HM14L16	3.0%	14.8
GA020276	HM14L14	3.1%	14.8
GA020276	HM14L06	3.1%	14.5
GA020276	HM14L05	3.3%	14.8
GA020276	HM14L12	3.4%	14.8
GA020276	HM14L13	3.4%	14.8
GA020276C	HM14L15	3.6%	14.8
GA020276C	HM14L09	3.6%	14.8

Residual stress in ormation low

E am le: irst article uali ication

irst articles o ten re uire e tensive testing to validate critical ro erties and characteristics

- Size/dimensions
- Chemical composition
- Mechanical properties
- Stress-corrosion cracking
- Defect assessment
- Microstructure/Grain-flow

Residual stress can handled similarly

E am le: irst article uali ication validation

avora le com arison etween measurement and model

Residual stress in ormation low

E am le: roduction surveillance testing

De ine measurement locations

- Select in an intelligent manner designed to provide maximum insight and usefulness
- Often useful to perform measurements in regions of excess material

Consider the in luence o various actors

- Locations of expected tensile residual stress residing inside of machined part
- Level of sensitivity between residual stress and processing/manufacturing
- Measurement access/applicability
- Locations of likely failure (e.g., applied stress hot spots)
- Difficult to inspect

Measurement locations esta lished through colla orative discussion etween stakeholders

- OEM understanding of locations critical to structural performance
- Material producer understanding of locations important to manufacturing
- Testing laboratory understanding of measurement technology/applicability

Cold work rocess sensitivity near-sur ace

Near sur ace residual stress varies with cold work

- Similar trend for hole drilling and ring core
- Confirms sensitivity between residual stress and cold work

Cold work rocess sensitivity ulk

Residual stress uality system documentation

Consistent set o language, s eci ications, and re uirements are re uired to ena le e licit treatment o residual stress during design and rocurement

- Developed a template for a residual stress controlled material procurement specification
- Actively working to seek updates to MIL and AMS specifications/standards

Key elements

- Residual stress requirements
 - Specified on drawings
- Process modeling plays a key role (full-field)
- Residual stress measurements at select locations
- Define first article acceptance criteria
- Define ongoing surveillance testing requirements

Residual stress re uirements e am le

Part s eci ic residual stress re uirements should e s eci ied on the engineering drawing

- Simple illustration shown
- Exclude tensile residual stress where it would impact performance
- Specify compressive residual stress where necessary to meet performance requirements

here do we go rom here

Actively manage residual stress throughout the roduct li e cycle

Tools are availa le to de ine residual stress as a com onent attri ute that is lowed throughout a su ly-chain

- Engineering drawings contain part-specific requirements
- Specifications and standards define the general approach and requirements (internal and industry)
- Measurements and modeling quantify residual stress

Purchase raw material that has consistent residual stress

• Specify appropriate requirements and engage material producers

Methods e ist to include residual stress in roduct li e analysis

Need to validate the models to ensure accuracy

Develo uality systems or residual stress and e ecute to certi y roducts

Measurements Su -grou date

Large Hole CX Evaluation

Large Hole C Evaluation

O ective

- Develop a coupon that scales-up the stress field
- Develop and interrogate measurement data

Cou on attri utes

- Large diameter
 - Maximize length scale of "near-surface" and "near-bore" regions
- Long enough to facilitate fatigue testing
- Wide enough to minimize edge margin effects

Material ty es

- 7075-T651
- 2024-T351

Large Hole C Evaluation

Current status

- Initial contour method measurements are complete
 - Residual stress consistent with scaling of geometry
 - Residual stress data is very consistent specimen-to-specimen
- Planning for next set of experimental testing is complete
 - Additional residual stress measurement methods
 - Fatigue testing

Summary o To ics or Today

Contour Method Round Ro in

- Given the same input data, participants return results very similar to the benchmark simulation stress field
- Phase 1 complete, Phase 2 ongoing

Measurements o Stress at Legacy vs New C Holes

- Legacy CX consistent with current production practices
- No evidence of "missed" holes

Residual Stress uality System

- Program looked at manufacturing induced residual stress (unintended)
- Developed an approach for quality management of residual stress processes (cold working)
- Many similarities with engineered residual stress processes

Large Hole E eriments

- Large holes with lower gradients that will be easier to measure
- Initial work is promising, continuing to evaluate further

Follow us:

@HillEngineeringLLC

Contact in ormation

Hill Engineering, LLC Gold Canal Drive Suite Rancho Cordova, CA - main line

www.hill-engineering.com

- ace ook.com/HillEngineeringLLC
 - twitter.com/hill eng

Analytical Methods Testing Su committees: Overview o Recent E orts

Engineered Residual Stress Implementation Workshop 2018 September 13, 2017

Robert Pilarczyk Group Lead – Structural Integrity Hill Engineering, LLC

analytical processes / engineered solutions

Tom Mills Principal Engineer APES, Inc

Acknowledgements

- □ A- T- Aircra t Structural Integrity Teams
- □ Air orce Research La
- □ Analysis Methods Testing Su committee Partici ants
- □ ERSI orking Grou

Agenda

- □ Round Ro in or C Holes
- Best Practices Document
- **Dra t Structures Bulletin**
- Engineering Im lementation o Residual Stress
- □ Crack Closure E ects
- Negative-R Test Data

Pur ose Initial

- Identify the random and systematic uncertainties associated with DTAs that incorporate residual stresses produced by Cx of fastener holes
- Many factors influencing the total uncertainty have been discussed and are currently under investigation by various members of the ERSI team
- For the first round-robin exercise, the focus will be on systematic uncertainties, or the uncertainty associated with the system or process used by the analyst (also known as epistemic uncertainties or model-form uncertainties)
- Specific input data was provided to each analyst participating in the exercise to minimize the random uncertainties associated with these types of analyses.
- The analyst was free to use any means to incorporate the residual stress into the DTA, any software suite, etc., however, it was important that the analyst adhered closely to the guidance provided so that the variability in the predictions will be limited to the aspects left to analyst's discretion.

Main ocus understand analyst-to-analyst rediction varia ility given i ed in ut data

Pur ose Actual

- Identify the random and systematic uncertainties associated with DTAs that incorporate residual stresses produced by Cx of fastener holes
- Many factors influencing the total uncertainty have been discussed and are currently under investigation by various members of the ERSI team
- For the first round-robin exercise, the focus will be on systematic uncertainties, or the uncertainty associated with the system or process used by the analyst (also known as epistemic uncertainties or model-form uncertainties)
- Specific input data was provided to each analyst participating in the exercise to minimize the random uncertainties associated with these types of analyses.
- The analyst was free to use any means to incorporate the residual stress into the DTA, any software suite, etc., however, it was important that the analyst adhered closely to the guidance provided so that the variability in the predictions will be limited to the aspects left to analyst's discretion.

□ Main ocus Investigate the consistency, strengths and weaknesses o each method to de ine est ractices moving orward

Conditions

					Hole			
Benchmark			Thickness	Width	Diameter	Hole Edge		Max Stress
Condition #	Material	Specimen Type	(in)	(in)	(in)	Margin	Loading	(ksi)
1	2024-T351	Non-CX Baseline	0.25	4.00	0.50	4.0		10
2		СХ					CA	25
3		Non-CX Baseline				1.2	(R=0.1)	10
4		СХ						25

□ In ut Data

- Geometry
- > Initial flaw size, shape, location, and orientation
- Material properties
- Loading spectrum
- Constraints
- Residual stress (contour results)

A Year of Answering the Why's???

analytical processes / engineered solutions

ERS

© 2018 Hill Engineering, LLC hill-engineering.com

Round Ro in or C Holes Action Items

Action Item	Title	Descri tion	ocal/s	Current Status
1	Additional Fractography	Complete additional fractography of Cx test coupons to refine markerband definition and identify any secondary cracking	Mills	Complete
2	Baseline Stress Intensity Plots	Develop stress intensity plots for non-Cx conditions (case #1 and #3) for comparisons		
3	AFGROW vs. Other Crack Aspect Ratio	Investigate AFGROW aspect ratio differences for case #1		Complete
4	Crack Transition Points	Incorporate crack size and cycle through thickness transition points	Warner	Complete
5	"Low" Crack Growth Rate Data	Investigate crack growth rate data between 1E-7 - 1E-6. Better correlations to test were observed for Case #4, which had rates > 1E 6. Case #2 correlation wasn't as good, and much of the life was in the range of rates 1E-7 to 1E-6.	Harter/Pilarczyk	Complete
6	Bore vs. Surface Crack Growth Rates	Reverse calculate bore and surface crack growth rate data for baseline coupons. Is there an observed difference between the different material orientations and does it correlate with observed differences in the recent AFGROW round robin results.	Harter/Pilarczyk	Complete
7	Crack Growth Rate "Dip"	Investigate the common "dip" in the crack growth rate and identify possible contributing factors.	APES / ESRD	Active contract until Aug
8	Baseline Rate Data	Investigate baseline rate data and its contribution to baseline predictions. Update accordingly and investigate impact on predictions for residual stress cases.	Harter/Pilarczyk	Complete
9	Crack Aspect Ratio	Investigate contributing factors to crack aspect ratio discrepancies, collaborating with AFGROW round robin.	Harter/Pilarczyk	Complete
10a	10a Applied Negative R Baseline Testing 10b	ive R Baseline Testing Complete fatigue testing with ASTM E(647) M(T) coupons as well as Case #1 geometry/material, but with an applied R roughly consistent with the R total for the residual stress cases (R=-1?)	Warner/Greer	INW
10b			APES	Active contract until Sep
11	Residual Stress Variability	Provide replicate measurement data, not just average, and statistically characterize and quantify impact on predictions	Carlson	INW
12	Part-thru and thru crack segregation	Segregate the test data and predictions for part-thru and thru cracks to see what additional insight we can gain	Warner	Complete
13	Verification of SIF calculations	Sanity check of SIF calculations		

Round Ro in or C Holes A GRO As ect Ratios

□ Classic Newman-Ra u solutions vs. Advanced awa -Andersson

Round Ro in or C Holes Corner Thru Crack Segregation

- Most analyses predict failure prior to test even becoming thru thickness crack
- Tests were thru thickness over a range of "c" lengths (0.1"-0.17")
- If thru thickness test crack lengths are plotted from c=0.17" to failure, as shown in bottom right, the test time to failure is fairly consistent, although that is only about ¼ of the tests life

ENGINEERING

Predict. Test. Perform

□ A GRO Round Ro in

Determine the ability of users, given the same loading spectrum, material data, and a given Initial Flaw Size (IFS), to predict the evolution of the crack front shape and total life of a given geometry using the AFGROW framework as the life prediction tool

HILL ENGINEERING Predict. Test. Perform.

analytical processes / engineered solutions

□ A GRO Round Ro in

- > Multi-directional rate data resulted in:
 - Minimal changes to life predictions
 - Better correlation to crack aspect ratio trends

Re : Harter, ., Case Study on Test/Prediction Correlation or Corner Cracks at Holes, Proceedings rom the AA S Con erence, acksonville, L.

□ Similar mismatch or ERSI Round Ro in

□ Retrodiction o crack growth rate data in a and c direction

APES, INC.

analytical processes / engineered solutions

□ Post-dictions with multi-directional material ro erties

D Material

Minimal differentiation with r/t

D Material Pro erties

Distinct trend consistent with open literature and test data

Round Ro in or C Holes A lied and Residual Stress Intensities

□ Signi icant Over redictions rom A GRO

Newman-Raju solutions w/ Gaussian Integration for residual stress

Round Ro in or C Holes A lied and Residual Stress Intensities

□ Signi icant contri ution rom Newman-Ra u solutions

Predict. Test. Perform.

Incor orated a ility to in ut RS with awa -Andersson solutions

Round Ro in or C Holes A lied and Residual Stress Intensities

Post-dictions Case

Round Ro in or C Holes A lied and Residual Stress Intensities

Post-dictions Case

Round Ro in or C Holes - Summary

□ The ear o hy s Has Been ruit ul

Additional Action Items Need to Be Resolved

□ Pu lish ournal Article

White paper submitted to 19th International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics (42nd National Symposium on Fatigue and Fracture Mechanics)

ollow-on Round Ro in E orts in ork

Round Ro in or C Holes Round Candidate

□ Geometrically large cou ons

- ➢ Part of the difficulty with the CX hole problem is the significance of the RS and applied stress gradients near the hole. Both gradients are very steep, which creates issues for measurements and life correlations. In an effort to minimize the impact of the gradients and increase the understanding of the RS near the hole, geometrically "large" coupons were developed to accomplish RS measurements and fatigue testing
- ≻Multi-tier approach:
 - Residual stress characterization
 - ➤ Fatigue testing
- ➤Coupon details:
 - > Material: 2024-T351 Plate, 7075-T651 Plate
 - ≻ Thickness: 1.0 inch
 - ≻ Hole Diameter: 1.0 inch
 - ➤ Centered Hole, Baseline (no CX) and Mid CX

analytical processes / engineered solutions

ERS

□ Pur ose

- Share best practices, lessons learned, and analysis methods with community
- Document benchmarks and case studies
- Compliment other policy documents

□ Goal O en Source Document

□ Organi ational Structure

- Organized similar to AGARD documents
 - Background information
 - Best practices and lessons learned
 - Benchmark problems
 - Case studies

□ Cha ter I - Introduction

- > Introduction to fatigue, damage tolerance, and residual stress
- Residual stress inducing processes and associated key characteristics
- Residual stress measurement techniques and associated key characteristics
- Considerations for modeling approaches
- Current guiding policy
- Historical modeling approaches

Mechar	nical Meth	iods Key	y Charact	eristics	Neutron Diffraction	2D mapping of multiple components	Difficult to obtain (limited facilities)
Mechanical Method	Typical Applications	Typical Depth of Residual	Durability Benefit	Damage Tolerance		Bulk residual stress	Significantly affected by microstructure variations
		Stress Benefit	Hole Drilling	Portable equipment	Less repeatable than		
Shot Peening	Widespread – Surface of Parts	~ 0.002-0.008	Yes	Minimal		ASTM standard	other techniques
						Near-surface measurement	
Surface Rolling	Rolled Threads, Gear Teeth, Fillets	~ 0.04"	Yes	Yes		Multiple stress components	
					Ring Core	Portable equipment	Large averaging volume
Low Plasticity Fan E	Fan Blades,	~ 0.04"	Yes	Yes		Near-surface measurement	
Burnishing	Radii					Multiple stress components	
CX Holes	Critical Fastener Holes	~ 1 radius	Yes	Yes	Contour	2D mapping of residual	Difficult to resolve sharp
Laser Shock Peening	Critical Geometric Features	~ 0.04"	Yes	Yes		stress Bulk residual stress	stress gradients
Forming		Surface to Full Field	Yes	Yes	Slitting	Excellent measurement repeatability	Limited to extruded cross sections

Strenaths

Measurement

Technique

XRD with

layer removal

analytical processes / engineered solutions

eaknesses o arious Residual

Weaknesses

Significantly affected by

microstructure variations Less repeatable than

other techniques

Stress Measurement Techni ues

Strengths

Portable equipment

□ Cha ter II Analytical Processes

- > Overview of analytical processes
- ➤ Key input data
 - Design info
 - Material models
 - Loading spectrum & retardation
 - Residual stress
- Analysis processes
 - Multi-point fracture mechanics
 - Coupled FEA
 - Other analytical approaches
- Way forward & recommendations

□ Cha ter III Other Considerations

- Factors influencing residual stress and the associated uncertainty
 - Key factors influencing residual stress
 - Variability in residual stress data
- Validation testing
- Non-destructive inspections
- Quality assurance
- Risk management
- Certification considerations
- Way forward & recommendations

analytical processes / engineered solutions

ERS

□ Cha ter Case Studies

- Laser shock peening case study
- Cx hole case study

References:

Polin, L., Bunch, J., Caruso, P., McClure, J. (2011), F-22 Program Full Scale Component Tests to Validate the Effects of Laser Shock Peening, 2011 ASIP Conference Hill, M., DeWald, A., VanDalen, J., Bunch, J., Flanagan, S., Langer, K. (2012), Design and analysis of engineered residual stress surface treatments for enhancement of aircraft structure, 2012 ASIP Conference

Current Status

Publicly released version available (July 2018)

□ Moving orward

- Document only as good as the inputs provided by community
- Need inputs related to:
 - Process modeling best practices
 - Other analysis methods
 - Factors that influence residual stress
 - Risk assessment considerations
 - Certification considerations
 - Procurement vs. sustainment considerations

analytical processes / engineered solutions

• Case studies

E NEED C

Dra t Structures Bulletin

Analytical Methods, uality Assurance, and alidation Testing Re uirements or E licit tili ation o Dee Residual Stresses to Esta lish the Bene icial E ects o Cold E anded astener Holes or Damage Tolerance

□ Initial Dra t Develo ed

➤ Jan-Aug 2018

Current Status

➤ USAF internal review

STRU	AFLCMC/EZ Bidg. 28, 2145 Monohan Way WPAFB, OH 45433-7101 Phone 937-255-5312
Number:	EZ-SB-18-YYY
Date:	Draft v0
Subject:	Analytical Methods, Quality Assurance, and Validation Testing Requirements for Explicit Utilization of Deep Residual Stresses to Establish the Beneficial Effects of Cold Expanded Fastener Holes for Damage Tolerance
 JSSG-2 1998 MIL-ST EN-SB- Equival Expand Interval Northro Best Pr (TLPS) (HE-R-0 Mills, T. Stress, 2015-11 Hill, M. and ana aircraft EN-SB- Structul Brauscl Method 2017 	5-2006, "Joint Service Specification Guide Aircrait Structures", 30 October STD-1530D, "Aircraft Structural Integrity Program", 13 August 2016 3B-17-001, "Testing and Evaluation Requirements for Utilization of an valent Initial Damage Size Method to Establish the Beneficial Effects of Cold inded Holes for Development of the Damage Tolerance Initial Inspection val,", 24 April 2017 hrop Grumman Corporation, "Analytical Considerations for Residual Stress, Practices and Case Studies, A-10 Thunderbolt Life-cycle Program Support S) ASIP Modernization VI, Crack Growth Analysis in Residual Stress Fields" R-072217 Revision B, 27 June 2018 T.; Honeycutt, K.; Prost-Domasky, S.; Brooks, C., "Integrating Residual as Analysis of Critical Fastener Holes into USAF Depot Maintenance", A3G- i-185420, 2 November 2014 M; DeWald, A.; <u>VapDalegn</u> , J.; Bunch, J.; Flanagan, S.; Langer, K., "Design analysis of engineered residual stress surface treatments for enhancement of aft structure, 2012, ASIP Conference 3B-08-012, "In-Service Inspection Crack Size Assumptions for Metallic tures", April 2018 sch, J.; Stubbs, D.; Fong, W., "Impact of Deep Residual Stress on NDI ioods", Engineered Residual Stress Implementation Workshop, 21 September y

Post-Service vs. New Manu acture Cou on Residual Stresses

- Load history / environment effects
- Initial stress shakedown

How Should We Account for in Analyses???

Crack Ti Plasticity Interaction

≻ Life predictions for average R.S. field – shows minimal effect on predicted fatigue life

Crack Ti Plasticity Interaction

Life predictions for average R.S. field – showing shift to the left, closer to average fatigue test results

- 1

Non-Dimensional Residual Stress - The Hodge Podge

- Key factors
 - Material (Fbry)
 - Hole diameter
 - Applied expansion
 - Thickness

Non-Dimensional Residual Stress

Applied Expansion

 $SzzMidthickness = e^{(\omega)x}[SzzMax + ((Vo) + (\omega)SzzMax)x] + SzzMin$

A lied E ansion	ω	Ο	S Ma	S Min
3.18	-7.75	-231.4	-86.0	2.08
3.68	-7.20	-215.6	-80.1	2.37
4.16	-5.98	-160.6	-75.9	2.57

Crack Closure E ects

- E tensive evaluation o crack growth tests at C holes and various a lied R APES ESRD
- ariation o e erimentally derived da/dN growth rate as a unction o R_{tot} K_{min}/K_{ma} at the crack ti determined rom simulation
 - The 'dip' in the da/dN curve occurs for cracks < 0.1 inch at negative R_{tot}
- $\hfill\square$ or R_{tot} , the di is not resent
 - > Corresponding to $R_{app} = 0.6, 0.7, 0.8$

Public Release Authority: 88ABW-2018-4366

analytical processes / engineered solutions

41

Crack Closure E ects

Modeling Closure

AFRL Phase III SBIR: Deep Residual Stress Methods

Public Release Authority: 88ABW-2018-4366

Displacement normal to the symmetry plane Positive displacement \rightarrow Crack opening

Negative R Testing

- □ Much o the crack growth rom C holes can occur in regions o negative R_{tot}
- GOAL: conduct limited negative-R crack growth testing to com are to A RL historical data
 - center cracked M(T) panels (as AFRL tested)
 - part-through crack "dog-bones"
- □ s ecimens o -T
 - ≻ R = -1
 - 1 x M(T) same as AFRL design
 - requires buckling guides
 - through-crack design
 - 2 x dogbones
 - non-standard geometry
 - no need for buckling guides
 - part-through crack design
 - > Repeat for R = -4

□ Re eat -s ecimen matri or -T

Contract Vehicle--Engineering and Analysis Activities in Aging Structures: A-10 ASIP Engineering Support

Public Release Authority: USAFA-DF-2018-322

Negative R Testing

Contract Vehicle--Engineering and Analysis Activities in Aging Structures: A-10 ASIP Engineering Support

Public Release Authority: USAFA-DF-2018-322

Negative R Testing coming

- \Box S ecimen Details: Center hole, corner crack, R , σ_{Ma} . ksi
 - > Attempt detailed measurements in bore to get thru thickness rate data
 - > 2024-T351 and 7075-T651
 - ➤ 3 specimens each
 - Testing by USAFA for A-10 ASIP; supported by SwRI & APES
- test s ecimens have een machined out o s ecimen remnants rom the same material lot as the tests used in the round ro in
- □ Augment growing Negative-R data sets or art-through cracks
 - SwRI: R = -0.3 (presented data at ERSI last year)
 - ➢ APES: R = −1, R = −4
- □ ariety o s ecimen geometries to com are with M T long crack data

Conclusions/Summary

- Signi icant Colla oration within Analysis Methods Su committee
 Thanks to those individuals that have provided inputs
- □ irst C Hole Residual Stress Round Ro in Success ul
 - ➤ (8) submissions thank you
- □ Second C Hole Residual Stress Round Ro in in Discussions
- Initial Best Practices Document Released
 - Need inputs from community
- Signi icant rogress made on understanding crack closure im lications to CG modeling in residual stress ields
- Negative-R crack growth data continues to e develo ed or art-through crack geometries

uestions

analytical processes / engineered solutions

© 2018 Hill Engineering, LLC hill-engineering.com

48

Fatigue Life Modeling in Residual Stress Fields

Negative-R Crack Growth Testing

ERSI Workshop Layton, UT

19 June 2018

Thomas Mills, Ph.D. • Scott Prost-Domasky, D.Sc., P.E. Kyle Honeycutt • Craig Brooks

Analytical Processes / Engineered Solutions, Inc.

Distribution A: Approved for Public Release. USAFA-DF-2018-322

Acknowledgements

This work was funded via the following contract:

Engineering and Analysis Activities in Aging Structures: A-10 ASIP Engineering Support

- Sabreliner: prime contractor
- SwRI: program manager

Lucky Smith

Background

Much of the crack growth from CX holes can occur in regions of negative R_{tot} .

Do we have well-characterized negative R test data, and does it have a large impact?

Reference AFRL negative R data from 1997**

These data formed basis for R-LO cut-off parameter

Below R-LO, which is a K value, no further shift in crack growth rate curves is modeled

GOAL: conduct limited negative-R crack growth testing to compare to AFRL historical data

center cracked M(T) panels (as AFRL tested) part-through crack dog-bones

** Boyd, K., Elsner, J., Jansen, D, Harter, J.: Structural Integrity Analysis and Verification for Aircraft Structures, Volume 2, Effects of Compressive Load on the Fatigue Crack Growth Rates of 7075-T651 and 2024-T3 Aluminum Alloys, WL-TR-97-3017. August 1996.

Distribution A: Approved for Public Release. USAFA-DF-2018-322

1997 AFRL Data: 7075-T651

Original test data is not available. Had to use digitized data from pdf report. Only R = -0.5 data seems to be unique, and only up to K of about 15 Rest of the data seems to support no further shifts in stress ratio curves at lower R

Distribution A: Approved for Public Release. USAFA-DF-2018-322

tested.

plasticity

1997 AFRL Data: 2024-T351

1.00E-02 Original test data is • Best R = -0.5 not available. 1.00E-03 Had to use digitized -Best R = -6data from pdf report. 1 1.00E-04 11 da/dN (inch/cycle) Only 2 stress ratios 1.00E-05 Appeared to have problems with 1.00E-06 R = -6 curve suspect 1.00E-07 1.00E-08 1 10 100 DK (ksi in^0.5)

Distribution A: Approved for Public Release. USAFA-DF-2018-322

Test Matrix

6 specimens of 2024-T351

R = -1

1 x M(T) same as AFRL design

requires buckling guides through-crack design

2 x dogbones

non-standard geometry no need for buckling guides part-through crack design

Repeat for R = -4

Repeat 6-specimen matrix for 7075-T651

Dogbone Crack Growth Specimen

M(T) Crack Growth Specimen

Stress Intensity Calculations

Corner crack tests go to crack sizes beyond Newman-Raju solutions in AFGROW

Used StressCheck to compute K

Boundary conditions: modeled full wedge grip constraint:

Middle-Tension Panels

Crack Growth Data

- Crack Length vs. Cycles
- Residual Life
- Crack Growth Rate vs. K

7075-T651 M(T) Crack Growth and Residual Life

7075-T651 M(T) Crack Growth Rate

2024-T351 M(T) Crack Growth and Residual Life

2024-T351 M(T) Crack Growth Rate

Corner Crack (CC) Dogbone

Crack Growth Data

- Crack Length vs. Cycles
- Residual Life
- Crack Growth Rate vs. K

7075-T651 CC Crack Growth and Residual Life

7075-T651 CC Crack Growth Rate

Distribution A: Approved for Public Release. USAFA-DF-2018-322

7075-T651 CC (R = -4)

7075-T651 CC (R = -1)

2024-T351 CC Crack Growth and Residual Life

2024-T351 CC Crack Growth Rate

2024-T351 CC (R = -4)

2024-T351 CC (R = -1)

Comparison of CC Growth Rates APES vs. SwRI

Summary

7075-T651 M(T) data

no difference between R = -4 and R = -1

agrees well with AFRL historical data

7075-T651 CC data

only slight difference between R = -4 and R = 1 data

2024-T351 M(T) data

residual life curves show differences below a = 0.9 inch

manifests as faster crack growth rates at lower K < 7 for R = -4

rate curves completely collapse for K > 11 ksi in

Data at K > 11 ksi in agrees well with upper bounds of AFRL historical data

APES data categorically faster than SwRI data, which tends to lower side of AFRL data

2024-T351 CC data

residual life curves between R = -1 and R = -4 are completely different

- R = -1 data: compare favorably with AFRL historical data
- R = -4 data: the less said the better

compression side of cycle was 80% of compressive yield (L direction, A Basis, MMPDS, Table 3.2.3.0(b_1) did this cause the problem ?

R = -4 tests in 7075-T651 CC specimens were only 50% of compressive yield.

Differences certainly exist between R = -1 and R = -4 in 2024-T351, but this appears to be test issue rather than true material behavior.

Questions ?

Answers ?

Engineered Residual Stress Im lementation ERSI orksho – Clear ield, tah Analysis Methods Su committee

RS Crack Closure Experimental Observations and Modeling

Ricardo Actis • Thomas Mills • Scott Prost-Domasky • Craig Brooks

September 2018

Distribution A: Cleared for public release 88ABW-2018-4366

analytical processes / engineered solutions

- FCG data: 7075-T7351 specimens with a cold-worked hole
- Constant amplitude loading R_{app} = 0.02, 0.10, 0.40, 0.60, 0.70, 0.80
- 24 specimen tested
- 4 for each R_{app}

EVALUATION OF EXPERIMENTAL DATA

Data Analysis *SwRI-4D3-01-G to SwRI-4D3-24-G Details*

#	Coupon ID	Material	Width	Thickness	Diameter	Edge Dist.	Smax	R _{applied}	Coupon	Initial Flaw
#			(in)	(in)	(in)	(in)	(ksi)		Туре	a(in)
1	SwRI-4D3-01-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.02	Dogbone	0.0180
2	SwRI-4D3-02-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.02	Dogbone	0.0230
3	SwRI-4D3-03-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.02	Dogbone	0.0270
4	SwRI-4D3-16-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.02	Dogbone	0.0120
5	SwRI-4D3-04-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.10	Dogbone	0.0210
6	SwRI-4D3-05-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.10	Dogbone	0.0245
7	SwRI-4D3-10-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.10	Dogbone	0.0355
8	SwRI-4D3-15-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.10	Dogbone	0.0115
9	SwRI-4D3-06-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.40	Dogbone	0.0230
10	SwRI-4D3-07-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.40	Dogbone	0.0190
11	SwRI-4D3-11-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.40	Dogbone	0.0245
12	SwRI-4D3-14-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.40	Dogbone	0.0220
13	SwRI-4D3-17-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.60	Dogbone	0.0220
14	SwRI-4D3-18-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.60	Dogbone	0.0200
15	SwRI-4D3-19-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.60	Dogbone	0.0165
16	SwRI-4D3-20-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.60	Dogbone	0.0155
17	SwRI-4D3-21-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.70	Dogbone	0.0230
18	SwRI-4D3-22-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.70	Dogbone	0.0230
19	SwRI-4D3-23-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.70	Dogbone	0.0200
20	SwRI-4D3-24-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.70	Dogbone	0.0200
21	SwRI-4D3-08-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.80	Dogbone	0.0210
22	SwRI-4D3-09-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.80	Dogbone	0.0195
23	SwRI-4D3-12-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.80	Dogbone	0.0310
24	SwRI-4D3-13-G	7075-T7351	2.40	0.25	0.50	1.20	27	0.80	Dogbone	0.0200

s ecimens

R_{a lied}

Data Analysis All 24 Specimens: Crack Length v. Cycles

4

Data Analysis

All 24 Specimens: da/dN – Crack Length

SwRI-4D3-01-G (R=0.02) SwRI-4D3-02-G (R=0.02) ▲ SwRI-4D3-03-G (R=0.02) ▲ SwRI-4D3-16-G (R=0.02) SwRI-4D3-04-G (R=0.1) SwRI-4D3-05-G (R=0.1) • SwRI-4D3-10-G (R=0.1) △ SwRI-4D3-15-G (R=0.1) + SwRI-4D3-06-G (R=0.4) ▲ SwRI-4D3-07-G (R=0.4) × SwRI-4D3-11-G (R=0.4) * SwRI-4D3-14-G (R=0.4) ♦ SwRI-4D3-17-G (R=0.6) △ SwRI-4D3-18-G (R=0.6) SwRI-4D3-19-G (R=0.6) SwRI-4D3-20-G (R=0.6) ▲ SwRI-4D3-21-G (R=0.7) SwRI-4D3-22-G (R=0.7) SwRI-4D3-23-G (R=0.7) SwRI-4D3-24-G (R=0.7) ◇ SwRI-4D3-08-G (R=0.8) SwRI-4D3-09-G (R=0.8) ▲ SwRI-4D3-13-G (R=0.8)

Distribution A: Cleared for public release 88ABW-2018-4366

Data Analysis da/dN – R_{tot}

- Variation of experimentally derived da/dN growth rate as a function of R_{tot} = K_{min}/K_{max} at the crack tip determined from simulation
 - Observation: The 'dip' in the da/dN curve occurs for short cracks at negative R_{tot}
- For $R_{tot} > 0$, the 'dip' is not present
 - This corresponds to $R_{app} = 0.6, 0.7, 0.8$

Examining R_{tot}

What do fracture faces tell us? Crack origin is lower, right corner of fracture face In higher magnification images, the origin is out of view Higher magnification images centered at 0.05 x 0.05 inch from origin

APES, INC.

analytical processes / engineered solutions

R_{app} = 0.02 Coupon (16G)

APES, INC.

analytical processes / engineered solutions

APES, INC.

analytical processes / engineered solutions

$R_{app} = 0.4$ Coupon (14G)

Evidence of Contact

Bannlind	Heavy Ox	ide (MEF)	Heavy O	xide (Int)	Pockets of Oxide					
к аррпео	Start	End	Start	End	Start	End				
0.02	0	0.15	0	0.1	0.1	0.3				
0.1	0	0.125	0	0.09	0.09	0.19				
0.4	0	0.11	0	0.07	0.07	0.17				
0.6					0.05	0.13				
0.7										
0.8										
	Values represent distance from bore (inch)									

R_{tot} Contour Maps

- Qualitative observations of fracture faces correlate well with these maps
- Oxide on fractures (from contact) seem to correlate with regions of $R_{tot} < -1$

Regions to the le t o red dashed lines denote heavy o ide

13

- A case for K-effective
 - Combining simulation with experimental observations

DATA ANALYSIS

Data Analysis

Specimen Dimensions & Reference RS for Simulation = STRESSCHECK

> da/dN UNITS=0Plate 7075-T7351~UltStrength=66

Center +X -X +Y -Y +Z -Z Display Dimensions Auto-fit Scale: 0

Data Analysis

Typical Prediction Using CPAT ($R_{app} = 0.02$)

- Simulation and test data
 - da/dN K_{max} curve with the LKP (R = 0.1) data. Predictions follow the R = -0.1 reference curve. Test points do not

SEPT 2018

Distribution A: Cleared for public release 88ABW-2018-4366

С

- Solve in CPAT for K_{mech}, K_{res} at c-tip

Computing R_{tot} and K_{max}

Data Analysis

Data Analysis

Determining K-effective

Value of K_{max} = (K_{max})_{Rlo} needed to get the same (da/dN)_{test} from the Rlo curve of the LKP data for each crack length

STRESSCHECK

3.0 • R = 0.02 R = 0.10R = 0.402.5 ----- Poly. (R = 0.02) (Kmax)Rlo / Kmax ----- Poly. (R = 0.10) ----- Poly. (R = 0.40) 2.0 v = 0.0034x² - 0.2496x + 5.2515 1.5 $R^2 = 0.9809$ 1.0 0.5 25.00 30.00 35.00 40.00 45.00 0.0 $\Delta K/(1 - R_{app})$ 15 10

For each R_{app} Summary Calibration SwRI 4D3 3.5 × All Rs **Summary Calibration SwRI 4D3** 3.5 -- Poly. (All Rs) $y = 0.0047x^2 - 0.328x + 6.4824$ 3.0 $R^2 = 0.9641$ 2.5 × (Kmax)Rlo / Kmax $y = 0.0033x^2 - 0.2444x + 5.2321$ 2.0 $R^2 = 0.9414$ × 1.5 1.0 v = 0.002x² - 0.1608x + 3.984 $R^2 = 0.9891$ 0.5 0.0 15.00 20.00 10.00 20 25 35 40 30 45

• Applying procedure to $R_{app} = 0.02, 0.10, 0.40$

• Plotting results in terms of $\Delta K / (1-R_{app})$

Data Analysis

Calibration

Combined

 $\Delta K/(1 - R_{app})$

Data Analysis

Using K-effective in Predictions

• Preliminary results for $R_{app} = 0.10$

Data Analysis

Using K-effective in Predictions

Crack Shape Specimen 4D3-15-G (Rapp = 0.10)

Distribution A: Cleared for public release 88ABW-2018-4366

Summary Data Analysis

- Using K_{max} as the dependent variable automatically incorporates the effect of the Residual Stress in the prediction
- Using $\Delta K/(1-R_{app})$ as the independent variable consolidates the calibration data for the three R_{app} considered in the study, and is independent of the RS
- Preliminary application of the calibration curve is promising, and it fits within the traditional approach of using a K-effective to account for closure effects

- Incremental plasticity (kinematic hardening)
- Simulation of CW + Contact + Remote Load

MODELING OF CLOSURE

24

Closure Model

Analysis Approach

- Simulation of mandrel insertion (4%) and removal
 - Incremental plasticity kinematic hardening
 - Ramberg-Osgood stress-strain curve
 - Distribution of residual stresses
- Introduce corner crack
 - Assume elliptical shape with dimension from test
 - Check contact effect on residual stresses
- Apply a remote load
 - Increments of 1ksi to 27 ksi
 - Check contact effect on residual stresses
 - Check crack opening as load increases

□ 0.10 in × 0.16 in

Closure Model

 Crack dimensions corresponding to specimen SwRI-4D3-15-G, Crack Step 9

Contact + Remote Loading

Distribution A: Cleared for public release 88ABW-2018-4366

Contact + Remote Loading

Contact + Remote Unloading

Crack Opening Summary

Summary Future Work

More work scheduled for FY19 Check back with us at ERSI 2019!

Nondestructive Ins ection NDI Su committee Overview

Engineered Residual Stress Im Iementation ERSI orksho

13 September 2018

John Brausch¹, Ward Fong²

¹AFRL/RXSA, Systems Support Division Materials and Manufacturing Directorate Air Force Research Laboratory Wright-Patterson AFB, OH 45433 ² Ogden NDI Program Office, Hill AFB, UT

Integrity **★** Service **★** Excellence

- Summary of Current Knowledge
- Gaps
- ERSI 2017 Priorities
- Progress since 2017

Title	First Name	Last Name	Company/Organization	Phone Number	Email Address
Mr.	John	Brausch	U.S. Air Force (AFRL - NDE Lead Engineer, Systems Support)	(937) 656-9151	john.brausch@us.af.mil
Dr.	Mike	Hill	Hill Engineering, LLC	(530) 754-6178	mrhill@hill-engineering.com
Mr.	Fred	Acosta	U.S. Marine Corp (F-5 NDI Lead)	(928) 580-5978	alfredo.acosta.ctr@usmc.mil
Mr.	Dave	Campbell	U.S. Air Force (Tinker AFB NDI Program Office Lead)	(405) 736-5008	david.campbell.2@us.af.mil
Mr.	Ward	Fong	U.S. Air Force (Hill AFB NDI Program Office Lead)	(801) 775-2483	ward.fong@us.af.mil
Mr.	Dave	Forsyth	Texas Research International (TRI) - Austin, Inc.	(512) 263-2101	dforsyth@tri-austin.com
Dr.	Carl	Magnuson	Texas Research International (TRI) - Austin, Inc.	(785) 766-8896	cmagnuson@tri-austin.com
Mr.	Tommy	Mullis	U.S. Air Force (Warner Robins AFB NDI Program Office Lead)	(478) 327-4122	Roy.Mullis@us.af.mil
Mr.	Clint	Thwing	Southwest Research Institue (SwRI)	(210) 522-3989	clinton.thwing@swri.org
Mr.	Mike	Reedy	U.S. Navy - NAVAIR - Compression Systems Engineer	(301) 757-0486	michael.w.reedy1@navy.mil
Mr.	Bryce	Harris	U.S. Air Force (F-16 ASIP Manager)	(801) 777-9381	bryce.harris@us.af.mil
Mr.	Jacob	Warner	U.S. Air Force (F-22 System Program Office - Structural Analysis)	(801) 586-8181	jacob.warner@us.af.mil
Mr.	Leo	Garza	L3 Communications - RC-135 Fleet Manager	(903) 457-4595	leo.garzaiii@L-3com.com
Dr.	Teodor	Dogaru	Southwest Research Institute (SwRI)	(210) 522-3139	teodor.dogaru@swri.org

Applied Compressive Stress

Shear-Wave Ultrasonics

Ultrasonic response from fatigue cracks under applied compressive stress.

Significant Impact ~6dB (50%) signal reduction per 4 ksi applied compressive stress.

Laser Shock Peening

Eddy Current, Ultrasonics, Fluorescent Penetrant

Hole Cold Working Eddy Current, Ultrasonics

TH PORCE RESELACT LADORNIC

Rotary Hole Eddy Current

90 . 80 Δ 70 ٠ % Screen Height •-8 ksi, 3D2-01-D 30 -8 ksi, 3D2-02-D 0 ksi, 3D2-01-D 20 0 ksi, 3D2-02-D ▲ 28 ksi, 3D2-01-D 10 △28 ksi, 3D2-02-D 0 0.000 0.050 0.100 0.150 0.200 0.250 Crack Length, MEF (inch)

Eddy Current Results

Minimal Impact

Surface Eddy Current

undee Eddy ednen

Outer Inspection Surface

Crack tunneling

Hole

Ultrasonic Inspection Results (variable gain)

Ultrasonics

Forsythe, D., Mills, T. "Results of Study of Applied Stress and CX Process on Detectability of Fatigue Cracks"

Significant Impact

Significant Impact

Ultrasonic "Dead-Zone" in Cx Holes

DZ = 0.3219*Diameter - 0.038

- Dead zone proportional to hole diameter but scatter suggests other influencing factors.
- Use upper bound of UT dead zone estimates to correct UT POD estimates for Cx holes.
- Ultrasonic inspections must be designed to interrogate beyond the tangency of the hole.

Ultrasonic "dead zone" proportional to hole diameter.

• Ultrasonic "Dead Zone" at Cx Holes

- Quantify UT "Dead Zone" for a range of Cx applied expansion ranges
- Investigate causes of "Dead Zone" variability
- Define UT POD correction factors for Cx holes
- Define optimum UT system design for Cx holes
- Fastener Installation on UT Detectability
 - Taper-Lok fasteners
 - Interference fit fasteners
 - Interference fit fasteners installed at Cx holes
- Other ERS Surface Treatments and Materials
 - Shot peening, low plasticity burnishing on aluminum and titanium (UT and FPI focused)
 - Laser Shock Peening (LSP) on titanium alloys

- Priority I. uanti y T dead one in C holes. Develo T POD correction actors.
 - Ma T dead one or C holes range o thicknesses and diameters
 - T-38 wing skin coupons generate cracks in aircraft skins
 - \circ Production Cx
 - TCTO Cx
 - Ca ture data w/ e isting T ins ection systems alidate o timum ins ection rocess.
 - Rotoscan
 - A IS SA and Navy
 - Measure residual stresses in su set o s ecimens using contour method
 - o ractogra hically si e su set o s ecimens
- ✓ Priority II. EN-SB- date
- Priority III. Investigate the im act o astener installation on ultrasonic atigue crack detecta ility
 - Ta er-Lok asteners A/C rogram riority
 - Interference fit fasteners
 - Interference fit fasteners installed in cold worked holes.

Distribution A. Approved for Public Release. Case Number: 88ABW-2018-4388

- Published EN-SB-008-012 Rev D, April 2018
 - Impact of Cx on surface eddy current inspection
 - Impact of Cx on ultrasonic inspection of Cx fastener holes
 - $\circ~$ Estimates of dead zone for POD correction
 - Restrictions for use of FPI and UT on Laser Peened AI structures
- Incorporated current knowledge into UT POD model
 - Applied compressive stress
 - Ultrasonic dead zone in Cx holes

 Supporting a/c program in the development of empirical ultrasonic inspection data for inspection around taper-lok fasteners – contract action pending.

QUESTIONS?

Distribution A. Approved for Public Release. Case Number: 88ABW-2018-4388

NDI/QA/Data Subcommittees 2017 Breakout Attendees

Name			Company/Organization	
Mr. John Brausch*			U.S. Air Force (AFRL - NDI Lead Engineer, Systems Support)	NDI Subcommittee Lead
	Ward Fong		U.S. Air Force - Hill AFB NDI Program Manager	
Doyle Motes			Texas Research International (TRI) - Austin, Inc.	
	Nick Bunnell		U.S. Air Force - Robins AFB NDI Level 3	
Tommy Mullis			U.S. Air Force - Robins AFB NDI Program Manager	
Mike Dubberly			Consultant	
Eleazar Morale			AFSC/ENSI-NDI Engineering	
	Tom Driscoll		AFLCMC/LPSE - Propulsion NDI Engineering	
David Campbell			Tinker AFB NDI Program Manager	
Josh Hodges			Hill Engineering	
Mike Brauss			Proto Mfg Inc.	
Taylor Thompson			Proto Mfg Inc.	
Teodor Dogaru			SouthWest Research Institute	
Maj Joseph Wahlquist			AFRL-RXCA Branch Chief	
	Eric Lindgren		AFRL-RXCA Research Lead	
Bryce Harris			F-16 ASIP Program Manager	
	Leo Garza		L3 Tech	
	Walt Matulowicz		AFLCMC/EZPT USAF NDI Program Office	
	Mark Kassan		AFSC/ENSI	
	Mike Paulk		AFLCMC/EZPT NDI Program Office - Chief	

Priority I. uanti y T dead one in C holes. Correlate to hole D and T.

- Round Robin Map UT dead zone for Cx holes selected specimens
 - RXSA, RXCA, AFSC/ENSI
 - Need stress ro iles rom al/ er Test Su committee T. Mills
- Measure surface stress/deformation profiles on select Cx specimens
 - PROTO via Navy SBIR, Fastener Cam via USAF SBIR
- Machine countersink, install interference fit fasteners
 - Measure stress profiles of select specimens PROTO via Navy SBIR
 - Re-measure UT dead-zone on selected Cx specimens
- Capture data w/ existing UT inspection systems Validate optimum inspection PAUT process – all available specimens Cx vs non-Cx AFRL/RXSA coordinates with NAVAIR/Hill AFB.
 - \circ Rotoscan
 - AFIS (USAF and Navy)

Priority II. Investigate im act o Ta er-Lok astener installation on ultrasonic atigue crack detecta ility

- Model Ta er-Lok stress ield Needed rom Modeling Team
- Empirical measurements of UT response under planned a/c program effort

Priority III. Characteri e im act o laser- eening on titanium.

• Integrate measurements into planned a/c qual. programs

Quality Assurance and Data Management for the Inclusion of Residual Stresses

Hazen Sedgwick A-10 ASIP, USAF

Hazen.Sedgwick@us.af.mil

13 Sept 2018

Distribution A: Approved for Public Release; Distribution is Unlimited. (Ref # 75ABW-2018-0063)

HOL SUPERINT

FDASP FIDUCIS

- Data management
 - A-10 PLM
 - MBD structure
 - PLM interaction tool (Nlign)
- Quality Assurance
 - Data capture at the point of maintenance

- 3D MBD(Legacy & EWA)
 - Data managed under part number effectivity
 - Defined critical inspection locations for data management

Visual information communication

Quick data access

Live charts to quickly communicate data and feed analysis

Defect Description (Top15) 2.300 2.200 2,100 2,000 1.900 1,800 1 700 1.600 1.500 1,400 1,300 1,200 1,100 1,000 900 800 700 600 500 400 300 200 100 Defect Descriptio <not set> (Count)

For Official Use Only

13

Damaged Mapped on Model for Trending

Quality Assurance

Data Capture at the Point of Maintenance

- A-10 Scheduled Structural Inspection (SSI) program.
 - Historically it takes 7-9 months from the asset induction date before Engineering sees SSI data
 - Low quality
 - No ability for engineering to address data issues while the asset is open and accessible
 - Usually asset is back on an aircraft and ready for service when the maintenance data is received
 - Engineer Tech required to manually input data into database

Data Capture at the Point of Maintenance

3D framework for quick and accurate digital inspection input

Data Capture at the Point of Maintenance

- •Aug-Sept 2016 NLign data collection test.
- •Customized NLign data capture trendable per SN component type
- Developed quick 'at a glance' reporting tool
 - Keep supervisors informed
 - Keep NDI tech and Mechanic in sync to work remaining

Data input screen

	A B		с	D	E F		G	
1	RH WOP Serial No 🚽	LH WOP Serial No 🚽	SSI Name 💌	Hole number 🚽	SSI Status 💌	Creation Date 💌	Date Status Change 💌	
2		00B6200627L	W50 LH	1	Complete	9/6/2016 12:29	9/6/2016	
з		00B6200627L	W33R LH	SS Web	Complete	9/6/2016 9:22	9/6/2016	
4		00B6200627L	W54 WS42.5 LH	1	Complete	9/6/2016 9:22	9/6/2016	
5		00B6200627L	W54 WS42.5 LH	1	Complete	9/6/2016 9:22	9/6/2016	
6		00B6200627L	W29 LH	SS	Complete	9/6/2016 9:03	9/6/2016	
7		00B6200627L	W29 LH	SS	Complete	9/6/2016 9:03	9/6/2016	
8		00B6200627L	W25(1) S11 RH	3	Complete	8/31/2016 10:27	8/31/2016	
9		00B6200627L	W23(2) LH	1	Complete	8/31/2016 9:01	8/31/2016	
10	00B6200627L		W25(2) OS11 LH	3	Complete	8/31/2016 9:01	8/31/2016	
11	00B6200627L		W24(3) OS2 LH	2	Complete	8/30/2016 13:24	8/31/2016	
12		00B6200627L	W24(3) LHOU Center Spar	7	Complete	8/30/2016 13:24	8/31/2016	
13		00B6200627L	W24(3) LHOU Center Spar	5	Complete	8/30/2016 13:24	8/30/2016	
14		00B6200627L	W24(3) LHOU Center Spar	4	Complete	8/30/2016 13:24	8/31/2016	
15		00B6200627L	W24(3) OS7 LH	7	Complete	8/30/2016 13:24	8/31/2016	
16		00B6200627L	W24(3) OS7 LH	6	Complete	8/30/2016 13:24	8/31/2016	
17		00B6200627L	W24(3) OS7 LH	1	Complete	8/30/2016 13:24	8/31/2016	
18		00B6200627L	W24(3) LHOU Rear Spar	1	Complete	8/30/2016 13:24	8/31/2016	
19		00B6200627L	W24(2) OS15 RH	7	Complete	8/30/2016 10:44	8/30/2016	
20		00B6200627L	W24(2) OS15 RH	7	Complete	8/30/2016 10:44	8/31/2016	
21		00B6200627L	W24(2) OS15 RH	7	Complete	8/30/2016 10:44	8/31/2016	
22		00B6200627L	W24(2) OS15 RH	7	Complete	8/30/2016 10:44	8/30/2016	
23		00B6200627L	W24(2) OS12 LH	2	Complete	8/30/2016 10:44	8/30/2016	
24		00B6200627L	W24(2) OS14 LH	1	Complete	8/30/2016 10:44	8/30/2016	
25		00B6200627L	W45 LH	1	Complete	8/30/2016 10:44	8/30/2016	
26		00B6200627L	W19W20 LH	11	Complete	8/30/2016 9:40	8/30/2016	
4	 Fuselage R 	eport CWP Report	OWP Report N (+					

Coordination Report

Data Capture at the Point of Maintenance

Historic SSI Data Capture Process

VS.

Digital data capture with NLign

- OWP 2016 test:
 - 3 weeks to complete with 100% data accuracy
 - Data available to engineers ~ 800% faster
- CWP 2017 = 2.5 months to complete with100% data accuracy
 - Data available to engineers ~ 500% faster
- 2018 full implementation of NLign on shop floor.

Data Capture at the Point of Maintenance

Data Spatial Positioning (DSP) System (RIF)

U.S. AIR FORCE

PEO FB/AFLCMC/LG-LZ

Requirement #: USAF-18-PEO-FB-9.K

Title: Maintenance Data Spatial Positioning (DSP) System

Military System or Acquisition Customer: Aviation Platforms - All Platforms

Description: Seeking the development of a maintenance DSP technology to provide real-time location feedback to maintainers, capture any maintenance tool data output, and communicate that data for condition-based aircraft management. This technology is building upon previous RIF efforts focused on data communication and analytics with the NLign tool, to enable a highly-effective, condition-based maintenance (CBM+) program. Venders should propose and develop the methodology, technology, and hardware for a basic spatial point locating tool, capable of capturing and associating that data to a userdefined airframe coordinate system (X,Y,Z or FS,WL,BL). Additionally, venders should propose and develop the methodology, technology, and hardware for incorporating the DSP system with existing maintenance non-destruction inspection (NDI) tools and cold expansion tools. Leveraging the NLign system from previous RIF efforts, the data positioning system will have the option to utilize pre-defined maintenance locations and provide feedback to the maintainer for location compliance. Any data output from maintenance tools should be captured with spatial coordinates and communicated to the NLign system for analysis. This tool is intended for depot or field use and to be quickly adaptable for all airframes. This effort will enhance maintenance data quality for all platforms and reduce the risk of misslocating or missing critical maintenance operations. Also, this tool will provide the missing verification and high-fidelity data needed in CBM+ to reduce serious risk concerns that have hindered the ability to apply 'game changing' fleet management strategies such as residual stress benefits. **Technical POC:** Hazen Sedgwick, Hazen Sedgwick@us.af.mil (801) 586-0346, or Luke Bracken,

luke.bracken@us.af.mil (801) 586-1861

ERSI RISK AND UQ SUBCOMMITTEE ACTIVITIES

Lucky Smith Southwest Research Institute LSmith@swri.org Laura Domyancic Hunt Southwest Research Institute LDomyancic@swri.org

Outline

- Risk and UQ Subcommittee Overview
- Short Presentations of Current Activities
 - "Probability of Cold Expansion (POCx) Variable," Laura Hunt, SwRI
 - "Some Observations on the Significance of Residual Stress Variability on Fatigue Crack Growth Life," Craig McClung, SwRI
 - "Residual Stress Sensitivity Analysis in Probabilistic DTA," Juan Ocampo, St. Mary's U

Committee Overview

• **GOAL**: Investigate and implement UQ methods that enhance the overall understanding of how residual stress affects life prediction analyses

• How we can reach the goal:

- Uncertainty Quantification
- Sensitivity Analysis
 - What are the most significant variables in the ERS process?
 - How can we maximize/minimize the benefits/damages of these variables?

2018 Workshop

- In the past year, the state of the art for UQ and sensitivity analysis methods were investigated
 - NASA UQ Challenge 2014 AIAA SciTech Conference
 - Spatial statistics
 - Variance-based and local sensitivity analysis methods
 - What methods are useful for the group going forward?
- We're here to help
 - Our subcommittee doesn't generate data
 - We received one RS data set in the past year

"PROBABILITY OF COLD EXPANSION" VARIABLE

A-10 ASIP and Southwest Research Institute

POCx

- How can we incorporate cold expansion into a PROFtype risk analysis?
- A-10 ASIP suggested a Probability of Cold expansion (POCx) variable that acts similarly to the Probability of Inspection (POI) variable that is currently in PROF
- POCx is a singular value that represents the probability that a hole was cold-worked correctly
 - "Correctly" is a loaded term
- This is not a final methodology, but rather a very simplified way to incorporate coldworking into current methods

Crack Growth Life Curves

- Results from the ERSI round-robin were used as an input for the cold expanded hole case
 - Benchmark 2, 25 ksi stress
- Residual stresses were removed from the AFGROW input to create results for a theoretical non-coldworked hole case

PROF Results

 Separate PROF analyses were run for the Cx and non-Cx cases

Incorporating POCx

- The SFPOF results for both analyses were imported into Excel
- 95% and 99% POCx were incorporated by the formula below

boar	d G		Font		Es.	AI	ignment		Es.	Numb
• : × ✓		× 🗸	<i>f</i> _x =0.05*C2+		5*F2					
	В	С	D	E	F	G	н	1	J	к
	No Cx			With Cx				95% POCx	99% POCx	
	0	1.39E-10		0	1.24E-10		0.00E+00	1.24E-10	1.24E-10	
	2500	9.59E-09		2500	1.27E-10		2500	6.00E-10	2.22E-10	
	5000	1.46E-07		5000	1.30E-10		5000	7.40E-09	1.58E-09	
	7500	7.43E-07		7500	1.34E-10		7500	3.73E-08	7.56E-09	
	40000			40000	4 975 49		40000	0.405.07	4 005 00	

POCx Risk Results

- POCx is a simple knockdown factor to incorporate residual stresses
 - Danger of becoming a "thumb-in-the-air" variable
- UQ is required to actually quantify this variable

Residual Stresses Sensitivity Analysis in Probabilistic Damage Tolerance Analysis

Juan D. Ocampo and Alexander Horwath

St. Mary's University

Luciano Smith and Laura Domyancic

Southwest Research Institute

Engineered Residual Stress Implementation Workshop 2018 Salt Lake City, UT, September 13–14, 2018.

- SMART DT AND Residual Stresses
- Residual Stresses Modeling Software (Update)
- Residual Stresses and Inspections
- Sensitivity Analysis
- Future Plans & Group Suggestions

Residual Stress Modeling Software

- Standalone executable to read experimental/ simulated data and find the best deterministic and probabilistic fit parameters.
 - > 2 Models Available (Expandable)
 - > 2D (Stress vs Depth) and 3D (Stress vs Depth vs Thickness).
 - Read input data in .txt & .csv format

> Model I*

$$\sigma(x) = (ss - si + C_1 x) Exp(-C_2 x) + si$$
$$C_1 = \frac{\{(ss - si)(1 - Exp(-C_2 B)) + siBC_2\}C_2}{(C_2 B + 1)Exp(-C_2 B) - 1}$$

Model II**

$$\sigma(x) = Asin(Bx + C)Exp\left(-\frac{x}{\lambda}\right)$$

* User Manual for ZENCRACK™ 7.1, Zentech International Ltd., Camberley, Surrey, UK, September, 2003.
 ** R. VanStone, "F101-GE-102 B-1B Update to Engine Structural Durability and Damage Tolerance Analysis Final Report (ENSIP), Vol. 2," General Electric, p. 5-2-2.

IN100ResidualStressProfilesGUI

O

Х
Input/Output

8

A2-1_stress.txt - Notepad					
File Edit Format View Help					
-1.928	0.254	0.000	-10.4		
-1.928	0.000	0.000	-16.8		
-1.928	0.252	0.000	-8.7		
-1.928	0.250	0.000	-6.5		
-1.928	0.248	0.000	-4.7		
-1.928	0.245	0.000	-3.2		
-1.928	0.243	0.000	-1.8		
-1.928	0.240	0.000	-0.7		
-1.928	0.237	0.000	0.2		
-1.928	0.234	0.000	1.1		
-1.928	0.231	0.000	1.7		
-1.928	0.228	0.000	2.3		
-1.928	0.224	0.000	2.7		
-1.928	0.220	0.000	3.0		
-1.928	0.216	0.000	3.1		
-1.928	0.212	0.000	3.1		
-1.928	0.207	0.000	3.0		
-1.928	0.202	0.000	2.9		

Mean and Standard Deviation Parameters

	Mean	St dev
SS	-879.16	58.58
si	205.68	9.448
c2	20.872	1.050

Correlation Parameters

	SS	Si	c2
SS	1	-0.214	0.402
si	-0.214	1	-0.796
c2	0.402	-0.796	1

Academic Example Problem

Input Parameters

FRS

Random Variables		Value	
	Fracture Toughness Distribution (Normal)	Mean = 34.5ksi \sqrt{in} , Standard Deviation = 3.8 ksi \sqrt{in} .	
	Initial & Repair Lognormal Size Distribution (a & c) (Lognormal)	Mean = 0.01 in, Standard Deviation = 0.001 in.	
	Extreme Value Distribution (Gumbel)	Location = 14.5 , Scale = 0.8 , and Shape = 0.0	
	Inspections (5,000 & 10,000)	POD Lognormal Mean = 0.07 in, Standard Deviation = 0.06	10

> SMART-AFGROW interface.

Inpections

Results without Inspections

Results without Inspections

Results without Inspections

ERSI Results with Inspections

Inducing RS at the Second Inspections

Sensitivity Study

Input Parameters

FRS

Random Variables	Value		
Fracture Toughness Distribution (Normal)	Mean = 34.5ksi \sqrt{in} , Standard Deviation = 3.8 ksi \sqrt{in} .		
Initial & Repair Lognormal Size Distribution (a & c) (Lognormal)	Mean = 0.005 in, Standard Deviation = 0.001 in.		
Extreme Value Distribution (Gumbel)	Location = 14.5, Scale = 0.8 , and Shape = 0.0		

ERSI Residual Stress Profile

Shot Peening Residual Stress Profile (Random)

$$\sigma(x) = (ss - si + c_1 x) Exp[-C_2 x] + si$$
$$C_1 = \frac{\{(\sigma_s - \sigma_i)(1 - Exp[-C_2 B]) + \sigma_i BC_2\}C_2}{(C_2 B + 1)Exp[-C_2 B] - 1}$$

Mean and Standard Deviation Parameters

		Mean (Mpa)			St dev
SS		-87	79.16		58.58
si		205.68			9.448
c2		20.872			1.050
Correlation Parameters					
	S	S	si		c2
SS		1	-0.2	14	0.402
si	-0.	214	1		-0.796

0.402

c2

-0.796

Compute sensitivities wrt standard deviation.

Define handbook example problems Need help from the group

Thank you!!

jocampo@stmarytx.edu

Some O servations on the Signi icance o Residual Stress aria ility on atigue Crack Growth Li e

ERSI Workshop Layton, Utah September 13-14, 2018

R. Craig McClung Southwest Research Institute San Antonio, Texas

- A few anecdotal observations are offered on the significance of variability in residual stress on fatigue crack growth lifetime
- Example 1: Relaxed surface residual stress field created by surface enhancement (shot peening or laser peening) – data courtesy Lambda Technologies (P. S. Prevéy)
- Example 2: Bulk residual stress field created by heat treating – data from MAI BA-11 project

E am le : Sur ace Engineered RS

- Surface enhancement methods such as shot peening (SP) or low plasticity burnishing (LPB) can introduce significant near-surface compressive RS fields.
- FCG analysis can be used to predict the influence of the resulting stable RS fields on fatigue life.
- In this example, alpha-beta Ti-6AI-4V laboratory coupons were subjected to SP or LPB and then thermally exposed (425°C/10 hrs) before RS profiles were measured.

E am le : Sur ace ERS A roach

- These RS profiles were inserted into a univariant weight function surface crack SIF solution.
- Hypothesizing that the surface enhancement could have introduced microscopic damage that would initiate fatigue cracks quickly, FCG analyses with small initial crack sizes were used to calculate total fatigue life.
- A simple El Haddad model was used to describe small-crack growth rate behavior.

E am le : Sur ace ERS E ect o Initial Crack Si e

 Variations in the assumed initial crack size had relatively little impact on calculated life (compare large scatter in fatigue lifetimes)

E am le : Sur ace ERS E ect o RS aria ility

 Small shifts (±9 ksi) in the RS profiles, hypothetically arising from process variability or measurement uncertainty, had a much larger impact on calculated life and were consistent with limited data for life scatter

E am le : Bulk RS Billet, Logs, Cou ons

- 7085-T74 billet cut into many 'logs' that were quenched and aged individually to intentionally leave significant residual stress
- Coupon blanks extracted from three longitudinal positions and six transverse positions (total of eighteen unique positions) within each log

E am le : Bulk RS A roach Overview

E am le : Bulk RS S ectrum Tests Tensile RS

Initial crack in region o <u>com ressive</u> residual stress

DF2 BS Spectrum Loading

Copyright 2018 Southwest Research Institute®

- In these tests, the RS had a significant impact on the predicted life, and predictions ignoring RS tended to be highly conservative or highly non-conservative.
- Predictions (32 tests) including mean value RS were generally accurate (±2x) with a conservative bias for constant amplitude loading, and accurate (±2x) with no bias for spectrum loading.
- How did RS scatter affect the predicted life in these tests?
 - Scatter in tensile RS generally had a very small effect
 - Scatter in <u>compressive</u> RS generally had a very <u>large</u> effect

- Use DARWIN probabilistic damage tolerance software
 - Current AFRL investment in DARWIN for AFLCMC
- Develop quantitative characterization of uncertainty in RS
 - Informed by RS models and RS measurements
- Use weight function SIF solutions to model effect of RS on crack driving force
- Perform probabilistic analysis of (uncertain) RS effects on FCG life and fracture risk

Princi al Com onents Analysis or Residual Stresses Along Crack Path

E ect o Random Residual Stress on Risk

Without Residual Stress

Observations on RS Variability and FCG Life

- Framework available to superimpose local residual stresses (e.g., surface RS at holes) with service stresses
- Univariant & bivariant WF SIF solutions available for corner/ surface/thru cracks at holes, corner/surface cracks in plates
- Probabilistic treatment of residual stress uncertainty available for bulk residual stresses in 2D finite element models
- Random RS capabilities expandable to local RS in 3D models

- Relatively small variations in residual stress can have a very large impact on predicted FCG lifetime when the residual stress is compressive
- Uncertainty in tensile residual stresses appears to have relatively less effect on life variability
- A more rigorous probabilistic treatment of RS uncertainty and its effect on fracture risk appears warranted
- DARWIN software provides a potential path forward, but some enhancements are needed